

Building Telephony Systems
with OpenSER

A step-by-step guide to building a high-performance
telephony system

Flavio E. Goncalves

 BIRMINGHAM - MUMBAI

Building Telephony Systems with OpenSER

Copyright © 2008 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2008

Production Reference: 1140408

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847193-73-5

www.packtpub.com

Cover Image by Raghuram Ashok (raghuram@iiitb.ac.in)

Credits

Author

Flavio E. Goncalves

Reviewers

Bogdan-Andrei Iancu

Daniel-Constantin Mierla

Development Editor

Swapna V. Verlekar

Technical Editor

Bhupali Khule

Editorial Team Leader

Mithil Kulkarni

Project Manager

Abhijeet Deobhakta

Indexer

Hemangini Bari

Proofreader

Chris Smith

Production Coordinator

Shantanu Zagade

Cover Work

Shantanu Zagade

About the Author

Flavio E. Goncalves was born in 1966 in Minas Gerais, Brazil. Having always had
a strong interest in computers, he got his first personal computer in 1983 and since
then it has been almost an addiction. He received his degree in Engineering in 1989
with focus in computer aided design and computer aided manufacturing.

He is also CEO of V.Office Networks in Brazil, a consulting company dedicated to
the areas of Networks, Security, Telecom, and Operating Systems and a training
center since its foundation in 1996. Since 1993, he has participated in a series of
certification programs having being certificated as Novell MCNE/MCNI, Microsoft
MCSE/MCT, Cisco CCSP/CCNP/CCDP, Asterisk dCAP, and some others.

He started writing about open-source software because he thinks the way
certification programs were organized in the past was very good to help learners.
Some books today are written by strictly technical people, who, sometimes, do not
have a clear idea on how people learn. He tried to use his 15-year experience as
instructor to help people learn open-source telephony software. His experience with
networks, protocol analyzers, and IP telephony, combined with his teaching skills,
gave him an edge to write this book. This is the second book he has written; the first
one was The Configuration Guide for Asterisk PBX.

As the CEO of V.Office, Flavio E. Goncalves balances his time between family, work,
and fun. He is the father of two children and lives in Florianopolis, Brazil, in his
opinion one of the most beautiful places in the world. He dedicates his free time to
water sports such as surfing and sailing.

You can contact him at flavio@asteriskguide.com, or visit his website
www.asteriskguide.com.

Writing this book has been a process that involved many people. I
would like to thank the staff at Packt Publishing who worked in all
the process of reviewing and editing the book. I would like to thank
Guilherme Goes, who wrote a good part of Chapter 6 and developed
SerMyAdmin for this book. I would also like to thank several
students, who took courses in the first versions of this book (in the
Portuguese language) for their feedback. Finally, I would like
to thank my family, for all the support they gave me during all
these years.

 About the Reviewers

Bogdan-Andrei Iancu is a part of the new generation of IT people with dual
nature—both technical and business. He is a co-founder of SER and OpenSER
projects and also founder and CEO of Voice System SRL, a "know-how" VoIP/
OpenSER company.

Born in 1978 in Romania, he received in 2001 the Master Degree in Computer
Science at University "Politehnica" Bucharest. For the next 4 years, his research
work at Fraunhofer Fokus Research Institute for Open Communication, Berlin is
sustained by hands-on experience in VoIP/SIP area as co-founder (in 2002) and main
developer of the Open Source project "SIP Express Router".

In 2004, Bogdan-Andrei Iancu starts his own enterprise—Voice System—dedicated
to designing, implementing, and deploying VoIP platforms. Focusing on advanced
service and dynamic routing together with scalability and security, in 2005 he (along
with other members of Voice System's team) co-founds the OpenSER public project
as the next step in VoIP enhancement.

For the last 4 years, Bogdan Iancu concentrated the Voice System energy in a dual
head direction: continue effort and contribution to the Open Source "OpenSER"
project as code, advertising, management, and sponsorship; developing industry
proofed VoIP platforms and solutions from ITSPs/ISPs to large carriers and telcos.

Voice System team grouped over the years more 7 core and main developers for the
"OpenSER" project, accumulating a large and comprehensive knowledge on it. The
works goes hand in hand with research and standardization especially in new SIP
related domains like presence, where Anca-Maria Vamanu provided a full presence
implementation for the project.

Voice System, as major OpenSER sustainer, is looking in how to share valuable
knowledge about OpenSER with the rest of community via several ways: training
courses, documentation, and starting from now, with helping the emergency of
OpenSER related books.

But all this wouldn't have been possible without the sustained effort
and help of the entire OpenSER community—developers and users
and I would like to thanks to all of them for putting trust in Open
Source and OpenSER

Daniel-Constantin Mierla is co-founder of OpenSER SIP Server project and
CEO of ASIPTO, a company focused on VoIP and OpenSER-based services. His
experience with SIP and VoIP started in the beginning of 2002, since then authoring
many online tutorials about OpenSER, including "OpenSER Devel Guide",
"OPENSER Core Cookbook", "OpenSER Pseudo-variables and transformations". He
participates periodically to VoIP events, speaking about OpenSER and VoIP. Since
2005, when OpenSER started, he is member of the management board of the project.

Table of Contents
Preface	 1
Chapter 1: Introduction to SIP	 7
SIP Basics	 8

SIP Proxy in the Context of a VOIP Provider	 9
SIP Operation Theory	 10
SIP Registration Process	 11

Server Operating as a SIP Proxy	 13
Server Operating as a SIP Redirect	 14
Basic Messages	 14

SIP Dialog Flow	 16
SIP Transactions and Dialogs	 22

The RTP Protocol	 23
Codecs	 23
DTMF-Relay	 23
Real Time Control Protocol (RTCP)	 24

Session Description Protocol (SDP)	 24
The SIP Protocol and the OSI Model	 25
The VoIP Provider "Big Picture"	 26

SIP Proxy	 26
User, Administration, and Provisioning Portal	 27
PSTN Gateway	 27
Media Server	 27
Media Proxy or RTP Proxy for Nat Traversal	 27
RADIUS Accounting	 27
CDRTool Rating	 28
Monitoring Tools	 28

Where You Can Find More Information	 28
Summary	 28

Table of Contents

[ii]

Chapter 2: The SIP Express Router	 29
Where Are We?	 30
What is the SIP Express Router?	 30
What Software to Use, SER or OpenSER?	 31
Usage Scenarios	 32
OpenSER Architecture	 33

Core and Modules	 34
Sections of the File openser.cfg	 34
Sessions, Dialogs, and Transactions	 35
openser.cfg Message Processing 	 35

SIP Proxy—Expected Behavior	 35
Stateful Operation	 36
Differences between Strict Routing and Loose Routing	 38
Understanding SIP and RTP	 39

Summary	 40
Chapter 3: OpenSER Installation	 41

Hardware Requirements	 41
Software Requirements	 42
Lab—Installing Linux for OpenSER	 42
Downloading and Installing OpenSER v1.2	 54
Lab—Running OpenSER at the Linux Boot 	 56
OpenSER v1.2 Directory Structure	 56

Configuration Files (etc/openser)	 57
Modules (/lib/openser/modules)	 57
Binaries (/sbin)	 57

Log Files	 57
Startup Options	 58
Summary	 60

Chapter 4: OpenSER Standard Configuration	 61
Where Are We?	 62
Analyzing the Standard Configuration	 62
Using the Standard Configuration	 71
Routing Basics	 72

Transactions and Dialogs	 72
Initial and Sequential Requests	 73
Routing in a Context of a Transaction	 73
Routing in the Context of a Dialog	 74
Lab—Tracking a Complete Dialog	 74
Lab—Running Stateless	 77
Lab—Disabling record-route	 77

Summary	 78

Table of Contents

[iii]

Chapter 5: Adding Authentication with MySQL	 79
Where Are We?	 80
The AUTH_DB Module	 80
The REGISTER Authentication Sequence	 81

Register Sequence (Packets Captured by ngrep)	 82
Register Sequence Code Snippet	 84
The INVITE Authentication Sequence	 84

INVITE Sequence Packet Capture	 85
Digest Authentication	 87

WWW-Authenticate Response Header	 88
The Authorization Request Header	 88
QOP—Quality of Protection	 88

Installing MySQL Support	 89
openser.cfg File Analysis	 93

The Openserctl Shell Script	 94
Openserctl Resource File	 98

Openserctlrc File	 98
Using OpenSER with Authentication	 99
Enhancing the Script	 101

Managing Multiple Domains	 102
Alternative Routes	 103

The Functions check_to() and check_from()	 106
Using Aliases	 106
Handling CANCEL requests and retransmissions	 107
Full Script with All the Resources Above	 108
Lab—Enhancing the Security	 112
Lab—Using Aliases	 112
Summary	 113

Chapter 6: Building the User Portal with SerMyAdmin	 115
SerMyAdmin	 115

Lab—Installing SerMyAdmin	 116
Basic Tasks	 121

Registering a New User	 122
Approving a New User	 122
User Management	 124
Domain Management	 127
Interface Customization	 127

Summary	 129
Chapter 7: Connectivity to the PSTN	 131

Where Are We?	 132
Requests Sent to the Gateway	 133

Table of Contents

[iv]

Requests Coming From the Gateway	 135
openser.cfg Inspection	 142

Lab—Using Asterisk as a PSTN Gateway	 145
Asterisk Gateway (sip.conf)	 147
Cisco 2601 Gateway	 148

Using LCR (Least Cost Routes)	 149
The LCR Module 	 149

Configuration Diagram	 150
VoIP Provider Dial Plan	 150
The LCR Table	 151
The Gateways Table	 151

The Gateway Groups Table	 152
Adding, Removing, and Showing LCR and Gateways	 152
Openserctl LCR-Related Commands.	 152

Notes:	 153
Examples: 	 153

Lab—Using the LCR Feature	 153
lcr Gateway Groups	 159
lcr Gateways	 159
lcr Routes	 160

Securing re-INVITES	 160
Blacklists and "473/Filtered Destination" messages	 161
Summary	 161

Chapter 8: Call Forward and Voice Mail	 163
Call Forwarding	 164

Pseudo-Variables	 165
AVP (Attribute-Value Pair) Overview	 167

AVPOPS Module Loading and Parameters	 169
Implementing Blind Call Forwarding	 169

Lab—Implementing Blind Call Forwarding	 170
Implementing Call Forward on Busy or Unanswered	 172

Inspecting the Configuration File	 182
Lab—Testing the Call Forward Feature	 184

Summary	 184
Chapter 9: SIP NAT Traversal	 185

NAT Types	 186
Full Cone	 186
Restricted Cone	 186
Port Restricted Cone	 187
Symmetric 	 187
NAT Firewall Table	 188

Solving the SIP NAT Traversal Challenge	 188

Table of Contents

[�]

Implementing a Far-End NAT Solution	 188
RFC3581 and the force_rport() Function	 189
Solving the Traversal of RTP Packets	 190

Handling REGISTER Requests behind NAT	 191
Determining if the Client is behind NAT	 192

Handling INVITE Messages behind NAT	 193
Handling the Responses	 195
MediaProxy Installation and Configuration	 195

Installing MediaProxy	 196
openser.cfg Analysis	 201

Modules Loading	 201
Modules' Parameters	 201
Register Message Processing	 202
Invite Message Processing	 202
BYE and CANCEL Message Processing	 203
RE-INVITE Message Handling	 204
Reply Message Handling 	 205
Routing Script 	 206

Invite Diagram	 215
Packet Sequence	 215

Lab Using MediaProxy for NAT Traversal	 223
Implementing a Near-End NAT Solution	 224

Why STUN Does Not Work with Symmetric NAT Devices	 226
Comparing STUN with TURN (Media Relay Server)	 226
ALG—Application Layer Gateways	 226
ICE (Interactive Connection Establishment)	 227

Summary	 227
Chapter 10: OpenSER Accounting and Billing	 229

Objectives	 229
Where Are We?	 229

VoIP Provider Architecture	 230
Accounting Configuration 	 231
LAB—Accounting using MySQL	 231
openser.cfg Analysis	 238
Accounting using RADIUS	 239

Installation of FreeRADIUS and CDRTool	 240
Packages and Dependencies	 240
Create and Configure the Database for the Radius server	 240
Configuration of the FreeRADIUS Server	 242
Configure the RADIUS Client (radiusclient-ng)	 243
Configure OpenSER	 244
Test the Configuration after Making a Call	 245

Table of Contents

[vi]

Using CDRTool for Rating	 246
LAB—CDRTool Installation	 247
LAB—Using CDRTool	 253

CDRTool Architecture	 264
How CDRTool Rates a Call	 264

Lab—Creating and Applying a Rating Plan	 267
Summary	 269

Chapter 11: Troubleshooting Tools	 271
Objectives	 271
Built-in Tools	 272
Packet Capture and Trace Tools	 273

TShark, Wireshark	 273
SipTrace	 277
Stress Testing Tools	 278

Sipsak	 278
SIPp	 279
Installing SIPp	 279
Stress Test—The SIP Signaling	 280
Stress Test—The RTP Signaling	 282
Testing MediaProxy 	 283

Monitoring Tools	 283
Summary	 284

After Words	 285
What's New in Version 1.2.3	 285

Cancel Handling	 285
Blacklist is Disabled by Default	 286
Method Filtering	 286
Alias_DB	 287
Branch_route	 287

Migration from 1.2.2 to 1.2.3 and 1.3.1	 287
Migrating the Script from Chapter 10 to openser 1.3.1	 288
RTPProxy	 289

Lab—Installing RTPProxy	 289
Areas for Further Investigation	 290

Carrier Route	 290
Dialog	 290
SIP Session Timers	 290

SIP Peering	 291
TLS Transport Layer Security	 292
Development	 292

PERL	 292

Table of Contents

[vii]

WeSIP	 292
Common Mistakes	 292

Daemon Does Not Start	 293
Client Unable to Register	 293
Sending a Call to a Provider with Authentication	 294
Typos in the Configuration File	 294
The Last Tip	 294

Forum and Training	 295
Summary	 295

Index	 297

Preface
We are starting a new era in the collaboration area. Voice and Video over IP are
starting to dominate the world of telecommunications in a disruptive movement
capable of changing the whole industry. The SIP (Session Initiation protocol)
technology is at the center of this revolution. I believe, at present, SIP is the most
used protocol for Voice and Video over IP.

In the future, when people learn how to use the technology, SIP will be for voice
communications what email is today for text communications. We are starting
with islands of SIP communications inside VoIP providers, enterprises, and even
governments. In the near future, the barriers between the islands will be broken
and you will be able to communicate with anyone in anyplace without paying high
fees. The only fees you will pay in the future will be the access to the data network,
because with the pervasiveness of VoIP and Video over IP, everything will be simply
data. I remember the first days of Internets email in the early 90s. It took some years
until everyone had an email address. The same thing could be happening in the SIP
world now. Unfortunately, the SIP providers still behave as islands not, usually,
allowing free inter-domain routing.

With the introduction of 3G, 4G, and WiMAX, fast data communications are
becoming widespread in the mobile industry. Newer phones from mainstream
manufacturers are starting to support WiFI, WiMAX, and obviously 3G. SIP clients
can run in these platforms changing the whole mobile communication industry in
the near future. Sure, the telephone companies will try, legitimately, to protect their
revenue sources, but they cannot hide for ever the SIP communication infrastructure
already in place. Slowly, users will start to use SIP clients in their mobile phones
hugely cutting the communication costs. The movement, even without a huge
sponsor, will spread by word of mouth until it becomes pervasive.

Preface

[�]

The infrastructure required for SIP communication has as its main component a
"SIP Proxy" server. OpenSER is one of the best SIP Proxies in the market. It is robust,
scalable, and licensed according to GNU GPL. OpenSER is now in the stage of early
adopters. It is still hard to learn and to use. The idea of this book is to teach you how
to implement the architecture of the SIP protocol using OpenSER. I hope this book
helps you, if you are starting to learn SIP, or implement a SIP infrastructure in your
company, school, or government. I wish you success in your implementations and I
sincerely hope that this material helps you.

What This Book Covers
Chapter 1 provides an overview of the SIP protocol, its architecture, and its
main components. SIP flows are explained and will be essential for the future
comprehension on this book. Some important concepts such as codecs, session
description protocol, and real-time protocol are presented at the end of the chapter.

Chapter 2 will give you an overview of the OpenSER software. We also cover how
SIP requests are processed and the basic concepts of transactions and dialogs after
explaining what SIP is.

Chapter 3 is where you will learn how to install Linux prepared for OpenSER and
OpenSER itself. After the installation, you will learn how to start and stop the
daemon and how to initialize OpenSER at boot time.

Chapter 4 introduces you to the basic scripts and analyzes the default configuration.
At the end it shows you some important concepts about routing transactions and
dialogs. Be sure to understand the routing basics before going ahead.

Chapter 5 shows how to connect OpenSER to a MySQL database to authenticate
all the initial requests. Later in this chapter you will see how to add some security
mechanisms to improve your system.

Chapter 6 introduces some important concepts about the user portal. You will learn
how to install and do the basic operations with SerMyAdmin. SerMyAdmin is
a graphical user interface for OpenSER that aims to make your life easier in the
administration of the server.

Chapter 7 teaches you how to connect to the PSTN (Public Switched Telephone
Network) using a gateway. Details on how to connect to an Asterisk Server or a
Cisco gateway are provided.

Chapter 8 introduces you to the concepts of call forwarding to a voicemail server.
You can use Asterisk as a voicemail server connected to OpenSER. Concepts such as
failure_route and AVPs are presented in this chapter.

Preface

[�]

Chapter 9 covers SIP NAT traversal. It introduces the problems and techniques to
traverse NAT devices for SIP communications.

Chapter 10 is about billing. It teaches you how to send call detail records to a RADIUS
Server and how to rate the calls using a GPL tool known as CDRTool.

Chapter 11 introduces some tools to help you in stress test your platform, detect voice
quality problems, and trace SIP calls.

In After Words you can see last minute information covering newer versions of
OpenSER, not available when the book was written.

What You Need for This Book
To use this book, I recommend that you have a formatted PC with at least 1GHz
of CPU, 20G bytes of disk and 512 Mbytes of RAM. You can also use the free and
downloadable VMWare Server (http://www.vmware.com), to install Linux and
OpenSER safely in a VM (virtual machine) running inside your own machine. You
will have to download the Debian distribution of Linux (www.debian.org). I used
the version 4.0R3 (etch) to test the labs. All the software used in this book is freely
available on the Internet, so in the proper chapters you will find the instructions on
how to download and execute. You will need at least two SIP devices to test most of
the labs. I use two PCs with a free SIP softphone and OpenSER in a virtual machine.
For the PSTN and Voicemail chapters, you will need to use an external gateway,
usually an Asterisk Server. In my testing environment I used a second virtual
machine using VMWare server. If you are going to use VMWare, be sure to disable
desktop firewall, a good source of headaches for labs.

Who This Book Is For
This book is intended for Linux and networking professionals, who want to
understand SIP and OpenSER from a practical perspective, or are interested in IP
telephony and call routing. It is suitable for VoIP provider personnel, because it
covers most of the existing components. Some experience with Linux and Networks
is required to be successful in the labs. Even inexperienced Linux users can complete
the labs, but knowledge about computer networks is essential. For inexperienced
Linux users I suggest using WinSCP and Putty to edit the configuration files and
send commands; both are free downloads.

Preface

[�]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

There are three styles for code. Code words in text are shown as follows: "Notice
that we have added only the keywords contrib and non-free after our
repository definitions".

A block of code will be set as follows:

/etc/apt/souces.list
deb http://ftp.br.debian.org/debian/ etch main contrib non-free
deb-src http://ftp.br.debian.org/debian/ etch main contrib non-free

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be made bold:

<?xml version="1.0" encoding="UTF-8"?>
<Context path="/serMyAdmin">
 <Resource auth="Container" driverClassName="com.mysql.jdbc.Driver"
maxActive="20" maxIdle="10" maxWait="-1" name="jdbc/openser_MySQL"
type="javax.sql.DataSource" url="jdbc:mysql://localhost:3306/openser"
username="sermyadmin" password="secret"/>
</Context>

Any command-line input and output is written as follows:

openser:/usr/src# cp mysql-connector-java-5.1.5/mysql-connector-java-
5.1.5-bin.jar /usr/local/tomcat6/lib

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
"To register a new user, in the login screen simply click on the Register Button".

Important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[�]

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send us a
note in the SUGGEST A TITLE form on www.packtpub.com or email suggest@
packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the Example Code for the Book
Visit http://www.packtpub.com/files/code/3735_Code.zip to directly downlad
the example code.

The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of
this book. If you find any errata, report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the Submit Errata link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata will be added to the list of existing errata. The existing errata
can be viewed by selecting your title from http://www.packtpub.com/support.

Preface

[�]

Questions
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

Introduction to SIP
The Session Initiation Protocol (SIP) was standardized by the Internet Engineering
Task Force (IETF) and is described in several documents known as RFCs (Request
for Comments). RFC3261 is one of the most recent and is called SIP version 2. SIP is
an application-layer protocol used to establish, modify, and terminate sessions or
multimedia calls. These sessions can be conferences, e-learning, telephony over the
Internet, and similar applications. It is based on a text protocol similar to Hypertext
Transfer Protocol (HTTP) and it is designed to start, keep, and close interactive
communication sessions between users. These days SIP is one of the most used
protocols for VoIP and is present on almost every IP phone in the market.

By the end of this chapter you will be able to:

Describe what SIP is
Describe what SIP is for
Describe SIP architecture
Explain the meaning of its main components
Understand and compare the main SIP messages
Describe the header fields processing for INVITE and REGISTER requests

The SIP protocol supports five features for establishing and closing
multimedia sessions.

User location: Determines the endpoint address used for communication.
User parameters negotiation: Determines the media and parameters to
be used.
User availability: Determines if the user is available or not to establish
a session.
Call establishment: Establishes the parameters for caller and callee, and
informs on call progress (ringing, ringback, congestion) to both parties.
Call management: Session transfer and closing.

•

•

•

•

•

•

•

•

•

•

•

Introduction to SIP

[�]

The SIP protocol was designed as part of a multimedia architecture containing other
protocols such as RVSP, RTP, RTSP, and SDP. However it does not depend on them
to work.

SIP Basics
SIP is very similar to HTTP in the way it works. The SIP address is just like an e-mail
address. An interesting feature used in SIP proxies is alias, so you can have multiple
SIP addresses such as:

johndoe@sipA.com

+554845678901@sipA.com

45678901@sipA.com

In the SIP architecture, we have user agents and servers. SIP uses a peer-to-peer
distributed model with a signaling server. The server handles just the signaling,
while the user agent clients and the user agent servers handles signaling and media.
This is depicted in the figure below:

•

•

•

Chapter 1

[�]

In the SIP model, a user agent, usually a SIP phone, will start communicating with its
SIP proxy, seen here as the outgoing proxy, to send the call using a message known
as INVITE.

The outgoing proxy will see that the call is directed to an outside domain. It will
seek the DNS server for the address of the target domain and resolve the IP address.
Then, the outgoing proxy will forward the call to the SIP proxy responsible
for DomainB.

The incoming proxy will query its location table for the IP address of agentB. If this
address was inserted in the location table by a previous registration process, so the
incoming proxy can locate the address. Now with this address, it can forward the call
to agentB.

After receiving the SIP message, agentB will have all the information required to
establish an RTP session (usually audio) with agentA. Using a message such as BYE
will terminate the session.

SIP Proxy in the Context of a VOIP Provider

Introduction to SIP

[10]

Usually VoIP providers don't implement a pure SIP trapezoid, they don't allow
you to send calls to outside domains, because this affects the revenue stream. They
implement a topology closer to a SIP triangle.

SIP Operation Theory
Below, you can see the main components of the SIP architecture. The entire SIP
signaling flows through the SIP proxy server. On the other hand, the media
signaling, transported by the RTP protocol, flows directly from one endpoint to
another. Some of the components will be briefly explained in the list below.

UAC (user agent client)—Client or terminal that starts the SIP signaling.
UAS (user agent server)—Server that responds to the SIP signaling coming
from a UAC.
UA (user agent)—SIP terminal (IP phone, ATA, softphone).
Proxy Server—It receives requests from a UA and transfers them to another
SIP proxy if this specific terminal requested is not under its domain.
Redirect Server—This receives requests and sends back to the caller
including data about the destination, instead of sending directly to the callee.
Location Server—This provides the callee's contact addresses to Proxy and
Redirect Servers.

•

•

•

•

•

•

Chapter 1

[11]

The Proxy, Redirect, and Location servers are usually available physically in the
same computer and software.

SIP Registration Process

The SIP protocol employs a component called a registrar. It is a server that accepts
REGISTER requests and saves the information received in these packets on the
Location server for their managed domains. The SIP protocol has a discovery
capacity; in other words, if a user starts a session with another user, the SIP protocol
has to discover an existing host where the user can be reached. The discovery process
is done by a Location server that receives the request and finds where to send it.
This is based in a Location database maintained by the Location server per domain.
The Registrar server may accept other types of information, not only the client's IP
addresses. It can receive other information such as CPL (Call Processing Language)
scripts on the server.

Before a telephone can receive a call, it needs to be registered within the location
database. In this database we will have all phones associated with their respective
IP addresses. In our example, you will see the SIP user 8590@voffice.com.br
registered at the IP address 200.180.1.1.

Introduction to SIP

[12]

RFC3665 defines best practices to implement a minimum set of functionality for a SIP
IP communications network. Below are the flows defined according to RFC3665 for
the register transactions:

According to RFC3665, there are five basic flows associated with the process of
registering a user agent, which are as follows:

1.	 A successful new registration—after sending the Register request, the user
agent will be challenged against its credentials. We will see this in detail in
the chapter dedicated to authentication.

Chapter 1

[13]

2.	 An update of the contact list—Since it is not a new registration, the message
already contains the digest and a "401" message won't be sent. To change the
contact list, the user agent just needs to send a new register message with the
new contact in the CONTACT header field.

3.	 Request for current contact list—In this case, the user agent will send the
CONTACT header field empty, indicating the user wishes to query the server
for the current contact list. In the 200 OK message, the SIP server will send
the current contact list in the CONTACT header field.

4.	 Cancellation of a registration—The user agent now sends the message with
an EXPIRES header field of 0 and a CONTACT HEADER field configured as
'*' to apply to all existing contacts.

5.	 Unsuccessful Registration—The UAC sends a Register Request and receives
a "401 Unauthorized" message, in exactly the same way as the successful
registration. In the sequence, it produces a hash and tries to authenticate.
The server, detecting an invalid password, again sends a "401 Unauthorized"
message. The process will be repeated for the number of retries configured in
the UAC.

Server Operating as a SIP Proxy
In the SIP proxy mode, the entire SIP signaling goes through the SIP proxy. This
behavior will help in processes such as billing and it is, by far, the most common
choice. The drawback is the overhead caused by the server in the middle of all SIP
communications during the session establishment. Remember, RTP packets will
always go directly from one endpoint to another, even if the server is working as a
SIP proxy.

Introduction to SIP

[14]

Server Operating as a SIP Redirect
The SIP proxy can operate in the SIP redirect mode. In this mode the SIP server is
very scalable, because it doesn't keep the state of transactions. Just after the initial
INVITE, it replies to the UAC with a "302 Moved Temporarily" and gets off the SIP
dialog. In this mode a SIP proxy, even with very few resources, can forward millions
of calls per hour. It is normally used when you need high scalability, but don't need
to bill the calls.

Basic Messages
The basic messages sent in a SIP environment are:

Chapter 1

[15]

Most of the time, you will use REGISTER, INVITE, BYE, and CANCEL. Some
messages are used for other features. As an example, INFO is used for DTMF relay
and mid-call signaling information. PUBLISH, NOTIFY, and SUBSCRIBE give
support to presence systems. REFER is used for call transfer and MESSAGE for
chat applications. Newer messages can appear depending on the protocol
standardization process.

Responses to these messages are in text format as in the HTTP protocol. Some of the
most important are shown below:

Introduction to SIP

[16]

SIP Dialog Flow
This section introduces some basic SIP operations using a simple example. Let's
examine this message sequence between two user agents shown below. You can see
several other flows associated with the session establishment in RFC3665.

The messages are labeled in sequence. In this example userA uses an IP phone to call
another IP phone over the network. To complete the call, two SIP proxies are used.

The userA calls userB using its SIP identity, called SIP URI. The URI is similar to
an email address, such as sip:userA@sip.com. A secure SIP URI can be used too,
such as sips:userA@sip.com. A call made using SIPS will use a secure transport
(TLS-Transport Layer Security) between the caller and the callee.

The transaction starts with userA sending an INVITE request addressed to userB.
The INVITE request contains a certain number of header fields. Header fields are
named attributes that provide additional information about the message; they
include a unique identifier, the destination, and information about the session.

Chapter 1

[17]

The first line of the message contains the method name. The following lines contain a
list of header fields. This example contains the minimum set required. We will briefly
describe these header fields below:

VIA: This contains the address at which userA will be waiting to receive
responses to this request. It also contains a parameter called branch that
identifies this transaction. The VIA header defines the last SIP hop as IP,
transport, and transaction-specific parameters. VIA is used exclusively for
routing back the replies. Each proxy adds an additional VIA header. It is a
lot easier for replies to find the route back using the VIA header, than to go
again to the location server or DNS.
TO: This contains the name (display name) and the SIP URI (that is, sip:
userB@sip.com) to the destination originally selected. The TO header field is
not used to route the packets.
FROM: This contains the name and SIP URI (that is, sip:userA@sip.com)
that indicate the caller ID. This header field has a tag parameter containing
a random string that was added to the URI by the IP phone. It is used for
purposes of identification. The tag parameter is used in the TO and FROM
fields. It serves as a general mechanism to identify the dialog, which is the
combination of the Call-ID along with the two tags, one from each participant
in the dialog. Tags can be useful in parallel forking.

•

•

•

Introduction to SIP

[18]

CALL-ID: This contains a globally unique identifier for this call generated by
the combination of a random string and the host name or IP address from the
IP phone. A combination of the tags TO, FROM, and CALL-ID fully defines
an end-to-end SIP relation known as a SIP dialog.
CSEQ: The CSEQ or command sequence contains an integer and a method
name. The CSEQ number is incremented for each new request inside a SIP
dialog and is a traditional sequence number.
CONTACT: This contains a SIP URI, which represents a direct route to
contact userA, usually composed of a user name and a FQDN (fully qualified
domain name). Sometimes the domains are not registered, thus, IP address
are permitted too. While the VIA header field tells the other elements where
to send a response, the CONTACT tells the other elements where to send
future requests.
MAX-FORWARDS: This is used to limit the number of allowed hops a
request can make in the path to its final destination. It consists of an integer
decremented by one on each hop.
CONTENT-TYPE: This contains a body message description.
CONTENT-LENGTH: This contains a byte count of the body message.

Session details, like media type and codec are not described using SIP. Instead it uses
a session description protocol called SDP (RFC2327). This SDP message is carried by
the SIP message, similar to an email attachment.

The sequence is as follows:

The phone does not know the location of userB or the server responsible for
domainB. Thus, it sends the INVITE request to the server responsible for the
domain sipA. This address is configured in the phone of userA or can be discovered
by DHCP. The server sipA.com is also known as the SIP proxy for the domain
sipA.com.

•

•

•

•

•
•

Chapter 1

[19]

1.	 In this example, the proxy receives the INVITE request and sends a message
"100 trying" back to userA, signaling that the proxy received the INVITE
and is working to forward the request. The SIP responses use a three digit
code followed by a descriptive phrase. This response contains the same
TO, FROM, CALL-ID, and CSEQ header fields and a parameter "branch" in
the header field VIA as the INVITE request. This allows userA's phone to
correlate the INVITE request sent.

2.	 ProxyA locates proxyB consulting a DNS server (SRV records) to find what
server is responsible for the SIP domain sipB and forwards the INVITE
request. Before sending the request to proxyA, it adds a VIA header field that
contains its own address. This allows userA's phone to correlate the response
to the INVITE request sent. .

3.	 ProxyB receives the INVITE request and responds with a "100 Trying"
message back to proxyA indicating that it is processing the request.

4.	 ProxyB consults its own location database for userB's address and then
it adds another VIA header field with its own address to the INVITE
request and sends to userB's IP address.

5.	 UserB's phone receives the INVITE request and start ringing. The phone
indicates back this condition, sending a message "180 Ringing".

6.	 This message is routed back through both proxies in the reverse direction.
Each proxy uses the VIA header fields to determine where to send the
response and removes its own VIA header from the top. As a result, the
message "180 Ringing" can return back to the user without any lookups
to DNS or Location Service Responses and without the need for stateful
processing. Thus, each proxy sees all messages resulting from the
INVITE request.

7.	 When userA's phone receives the "180 Ringing" Responses, it starts to ring
back, to signal to the user that the call is ringing on the other side. Some
phones show this in the display.

Introduction to SIP

[20]

8.	 In this example, userB decides to answer the call. When userB responds, the
phone sends a response "200 Ok" to indicate that the call was taken. The "200
Ok" message contains in its body a session description specifying codecs,
ports, and everything pertaining to the session. It uses the SDP protocol for
this duty. As a result, there is an exchange in two phases of messages from A
to B (INVITE) and B to A (200 OK) negotiating the resources and capabilities
used on the call in a simple "offer/response" model. If userB does not want
to receive the call or is busy, the "200 OK" won't be sent and a message
signaling the condition (that is, "486 Busy Here") will be sent instead.

The first line contains the response code and a description (OK). The following
lines contain the header fields. The fields VIA, TO, FROM, CALL-ID, and CSEQ are
copied from the INVITE request. There are three VIA fields, one added by userA,
another by proxyA and finally that added by proxy B. The SIP phone of userB added
a parameter TAG on both end points inside the dialog, which will be included on all
future requests and responses for this call.

The CONTACT header field contains the URI with which userB can be contacted
directly on their own IP phone.

Chapter 1

[21]

The CONTENT-TYPE and CONTENT-LENGTH header-fields give some
information about the the SDP header ahead. The SDP header contains media-related
parameters used to establish the RTP session.

1.	 In this case, the message "200 Ok" is sent back through both proxies and is
received by userA and then the phone stops ringing back indicating that the
call was accepted.

2.	 Finally userA sends an ACK message to userB's phone confirming the
reception of the "200 OK" message. In this example the ACK is sent directly
from phoneA to phoneB avoiding both proxies. ACK is the only SIP method
that has no reply. The endpoints learned each other's addresses from the
CONTACT header fields during the INVITE process. This ends the cycle
INVITE/200 OK/ACK also known as SIP three way handshake.

3.	 At this moment the session between both users starts and they send media
packets to each other using a mutually agreed format established by the
SDP protocol. Usually these packets are end-to-end. During the session, the
parties can change the session characteristics issuing a new INVITE request.
This is called a re-invite. If the re-invite is not acceptable, a message "488 Not
Acceptable Here" will be sent, but the session will not fail.

4.	 At the session end, userB disconnects the phone and generates a BYE
message. This message is routed directly to userA's softphone bypassing
both proxies.

5.	 UserA confirms the reception of the BYE message with a "200 OK"
message ending the session. No ACK is sent. An ACK is sent only for
INVITE requests.

In some cases it can be important for proxies to stay in the middle of the signaling to
see all messages between endpoints during the whole session. If the proxy wants to
stay in the path after the initial INVITE request it has to add the RECORD-ROUTE
header field to the request. This information will be received by userB's phone and
it will send back the message through the proxies with the RECORD-ROUTE header
field included too. Record routing is used in most scenarios.

The REGISTER request is the way that proxyB uses to learn the location of
userB. When the phone initializes or at regular time intervals, softphone B sends
a REGISTER request to a server on domain sipB known as "SIP REGISTRAR".
The REGISTER messages associate a URI (userB@sipB.com) to an IP address.
This binding is stored in a database in the Location server. Usually the Registrar,
Location, and Proxy server are in the same computer and use the same software.
OpenSER is capable of playing the three roles. A URI can only be registered by a
single device at a certain time.

Introduction to SIP

[22]

SIP Transactions and Dialogs

It is important to understand now the difference between a transaction and a
dialog. A transaction occurs between a user agent client and a user agent server and
comprises all messages from the first request to the final response. The responses
can be provisional starting with 1 followed by two digits (e.g. 180 Ringing) or final
starting with 2 followed by two digits (e.g. 200 OK). The scope of a transaction is
defined by the stack of VIA headers of the SIP messages. So, the user agents, after the
initial invite, don't need to rely on DNS or location tables to route the messages.

A dialog usually starts with an INVITE transaction and ends with a BYE transaction.
A dialog is identified by the CALL-ID header field. A combination of the TO tag, the
FROM tag, and the Call-ID completely defines the dialog.

According to RFC 3665 there are 11 basic session establishment flows. The list
is not meant to be complete, but covers the best practices. The first two were
already covered in this chapter, "Successful Session Establishment" and 'Session
Establishment Through Two Proxies". Some of them will be seen in the chapter
dedicated to call forwarding such as "Unsuccessfull with no Answer" and
"Unsuccessful Busy".

Chapter 1

[23]

The RTP Protocol
The Real Time Protocol (RTP) is responsible for the real-time transport of data such
as audio and video. It was standardized in RFC3550. It uses UDP as the transport
protocol. To be transported, the audio or video has to be packetized by a codec.
Basically, the protocol allows the specification of timing and content requirements of
the media transmission for the incoming and outgoing packets using:

Sequence number
Timestamps
Packet forward without retransmission
Source identification
Content identification
Synchronism

The RTP has a companion protocol called RTCP (Real Time Control Protocol) used to
monitor the RTP packets. It can measure the delay and jitter.

Codecs
The content described in the RTP protocol is usually encoded by a codec. Each codec
has a specific use. Some have compression while others don't. The G.711 codec,
which does not use compression, is very common. With 64Kbps of bandwidth for
a single channel it needs a high speed network, commonly found in Local Area
Networks (LANs). However, in Wide Area Networks (WAN) 64Kbps can be too
expensive to buy for a single voice channel. Codecs such as G.729 and GSM can
compress the voice packets to as low as 8Kbps saving a lot of bandwidth. Some
codecs such as the iLBC from Global IP sound can conceal packet loss. The iLBC can
sustain a good voice quality even with 7% packet loss. So you have to choose the
codecs you will support in your VoIP provider wisely.

DTMF-Relay
In some cases the RTP protocol is used to carry signaling information such as DTMF.
RFC2833 describes a method to transmit DTMF as named events in the RTP protocol.
It is very important that you use the same method between user agent servers and
user agent clients.

•

•

•

•

•

•

Introduction to SIP

[24]

Real Time Control Protocol (RTCP)
RTCP can provide feedback on the quality of reception. It provides out-of-band
control information for an RTP media flow. Statistics such as jitter, round trip time
(RTT), latency, and packet loss can be gathered using RTCP. RTCP is usually used
for voice quality reporting.

Session Description Protocol (SDP)
The SDP protocol is described in RFC4566. It is used to negotiate session
parameters between the user agents. Media details, transport addresses, and other
media-related information are exchanged between the user agents using the SDP
protocol. Normally the INVITE message contains the SDP offer message, while the
"200 OK" contains the answer message. Below these messages are shown. You can
observe that the GSM codec is offered, but the other phone does not support it. Then
it answers with the supported codecs, in this case G.711 ulaw (PCMU) and G.729.
The session rtpmap:101 is the DTMF-relay described in the RFC2833.

INVITE (SDP Offer).

Chapter 1

[25]

200 OK (SDP Answer).

The SIP Protocol and the OSI Model
It is always important to understand the voice protocols against the OSI model to
situate where each protocol fits.

Introduction to SIP

[26]

The VoIP Provider "Big Picture"

Before we start to dig in the SIP proxy it is important to understand all the
components for a VoIP provider solution. A VoIP provider usually consists of several
servers and services. The services described here could be installed in a single server
or multiple servers depending on the dimensioning.

In this book we will cover each one of these components, from left to right, in the
chapters ahead. We are going to use this picture in all chapters to help you to know
where you are.

SIP Proxy
The SIP proxy is the central component of our solution. It is responsible for
registering the users and for keeping the location database (which maps IP to SIP
addresses). The entire SIP routing and signaling is handled by the SIP proxy and
it is responsible too for end user services such as call forwarding, white/blacklist,
speed dialing, and others. This component never handles the media (RTP packets);
all media-related packets are routed directly from the user agent clients, servers, and
PSTN gateways.

Chapter 1

[27]

User, Administration, and Provisioning Portal
One important component is the user administration and provisioning portal. In the
portal, the user may subscribe to the service and should be able to buy credits, change
passwords, and verify his or her account. On the other hand, administrators should be
able to remove users, change user credits, grant, and remove privileges. Provisioning is
the process used to make it easier, for administrators, to provide automatic installation
of user agents such as IP phones, analog telephony adapters, and softphones.

PSTN Gateway
To communicate to the public switched telephone network, a PSTN gateway is
required. Usually this gateway will interface to the PSTN using E1 or T1 trunks.
The most common products in this arena are gateways from Cisco, AudioCodes,
and Quintum. Asterisk is gaining market in this area, because of its price per port
cost, sometimes 75% less than the competitors. To evaluate a good gateway, check
the support of SIP extensions such as RFC3515 (REFER), RFC3891 (Replaces), and
RFC3892 (Referred by). These protocols will allow unattended transfers behind the
SIP proxy; without them in the gateway it might be impossible to transfer calls.

Media Server
The SIP proxy never handles the media. Services such as IVRs, voicemail, conference,
or anything related to media should be implemented in a media server. SEMS SIP
Express media server, developed by iptel, has some nice features such as conference,
voicemail, and announcements. Once again, Asterisk can be used as a wildcard to
provide these services.

Media Proxy or RTP Proxy for Nat Traversal
Any SIP provider will have to handle NAT traversal for its customers. The media
proxy is an RTP bridge that helps the users behind symmetric firewalls to access
the SIP provider. Without proxies it won't be possible to serve as much as 35% of
the users. You can implement a universal NAT traversal technique using these
components. The media proxy can help you too in the accounting correction for
unfinished SIP dialogs, which, for some reason, didn't receive the BYE message.

RADIUS Accounting
A server with RADIUS installed will be fundamental for accounting the calls. A
SIP provider should take maximum care of accounting records. OpenSER can
be configured to send the accounting to a RADIUS server such as Radiator or
FreeRADIUS. SIP calls can be accounted to a database as well. However, accounting
to a database generates two records that need to be correlated manually.

Introduction to SIP

[28]

CDRTool Rating
The RADIUS server has information about call duration, but does not have
information about the rates and prices for the call. Applying prices to calls can be
very tricky. We will use for our provider a GPL tool called CDRTool developed by
AG projects (cdrtool.agprojects.com). It will be responsible for applying rates to calls.

Monitoring Tools
Finally we will need monitoring, troubleshooting, and testing tools to help debug
any problems occurring in the SIP server. The first tool is the protocol analyzer and
we will see how to use ngrep, ethereal, and tethereal. OpenSER has a module called
SIP trace, which we will use too.

Where You Can Find More Information
The best reference for the SIP protocol is RFC3261. To read the RFCs is
a little bit boring and sleepy (it is very good when you have insomnia).
You can find the RFC at: http://www.ietf.org/rfc/rfc3261.txt.
A good SIP tutorial can be found at Columbia University:
http://www.cs.columbia.edu/~coms6181/slides/11/
sip_long.pdf. Together with this you can find a lot of information
about SIP at http://www.cs.columbia.edu/sip/.
A very good tutorial can be found at the iptel website:
http://www.iptel.org/files/sip_tutorial.pdf.
There is a mailing list where you can post questions about SIP called
SIP implementors: https://lists.cs.columbia.edu/mailman/
listinfo/sip-implementors.

Summary
In this chapter you have learned what the protocol SIP is and its functionality. You
had the opportunity to get to know the SIP components such as the SIP proxy, SIP
Registrar, User Agent Client, User Agent Server, and Gateway PSTN. You saw
SIP architecture, its main messages and processes. Some places to find further
information were listed too.

The SIP Express Router
We discussed in the last chapter the big picture of a VoIP provider. Usually a VoIP
provider is composed of several components. These components can reside in the
same machine or be spread over several machines depending on your dimensioning.
One of these components is the SIP proxy server, in our case the server running
the OpenSER software. As the name implies, what best describes the SER is a SIP
Router. It is able to manipulate the SIP headers and route packets at extremely
high speeds. Third-party modules give SER extreme flexibility to play roles for
which it was not originally intended, such as NAT traversal, IMS, Load Balancing,
and other functionalities. In this chapter we will show you the possibilities and the
architecture of the SIP Express Router.

By the end of this chapter you will be able to:

Explain what the SIP Express Router (SER) is
Choose between two available open-source projects, SER and OpenSER
Describe their usage scenarios
Distinguish between the different sections of the openser.cfg file
Describe the processing of SIP messages
Distinguish between loose and strict routing
Distinguish between SIP and SDP

•

•

•

•

•

•

•

The SIP Express Router

[30]

Where Are We?
The VoIP provider solution has many components. To avoid loosing the perspective,
we will show this picture in every chapter. In this chapter, we are working with the
SIP proxy component.

What is the SIP Express Router?
The SIP Express Router is an open-source SIP proxy server compliant to the IETF
RFC3261 SIP protocol. It is targeted at large volume applications.

Chapter 2

[31]

With its small footprint the SER is extremely fast to forward requests and can handle
thousands of users in a single server. It is being used by large voice-over-IP providers
and for embedded IP PBXes with very low processing power. Their interoperability
with several sorts of equipment makes them a de facto standard.

What Software to Use, SER or OpenSER?
SER was originally developed by the FhG Fokus research institute in Berlin,
Germany, and released under the GPL license. The core developers of SER were
Andrei Pelinescu-Onciul, Bogdan-Andrei Iancu, Daniel Constantin Mierla, Jan Janak,
and Jiri Kuthan. Some contributors joined the project later, namely Juha Heinamen
(RADIUS, ENUM, DOMAIN, URI), Greg Fausak (POSTGRES), Maxim Sobolev
(NATHELPER), Adrian Georgescu (MEDIAPROXY), Elena Ramona Modroiu
(XLOG, DIAMETER, AVPOPS, SPEEDDIAL), Miklos Tirpak (Permissions),
and others.

OpenSER is a fork of the original SER project. In 2004 FhG Fokus started a spinoff of
the SER project creating the iptel.org. In 2005 the commercial variant of IPtel was
sold to TEKELEC. The core development team was split in two. Three of them went
to iptel.org (Andrei Pelinescu-Onciul, Jan Janak, and Jiri Kuthan). The other two
(Bogdan Andrei Iancu and Daniel Constantin Mierla) left the FhG to start a company
called Voice-System the main maintainer of the OpenSER project started in 2005.

This book started in late 2005 based on the SER project. At that time, I was interested
in a NAT traversal solution that was only available using SER. The scalability of
Asterisk was not good enough to host a SIP provider, and so I started playing with
SER. The documentation was really hard to understand and I started writing my
own to train the administrators of the SIP providers.

After the eBook was ready, I found that the SER project was almost halted. Most of
the code dated to 2003. After a little research I found the OpenSER project. It seemed
to be more active, with newer modules and more frequent releases. I was able to
change everything to OpenSER in very little time.

I don't want to get into the politics of SER versus OpenSER. The concepts presented
here are valid for both. The fact is that is written for OpenSER.

OpenSER has a flexible plug-in model for third-party applications. Applications
can be easily created and plugged in to the server. This plug-in model, allowed
the development of several new modules, such as RADIUS, DIAMETER, ENUM,
PRESENCE and SMS to name a few. Newer modules are being added every month.
You can check available modules for OpenSER 1.2.x at http://www.openser.org/
docs/modules/1.2.x/.

The SIP Express Router

[32]

The performance and robustness of OpenSER allows it to be used to serve millions
of users. On a recent performance report dated 14th March 2007, OpenSER 1.2.x
was able to handle register requests to an equivalent of 4 million users. The TM
(Transaction Module) was able to handle 28 million calls per hour. The complete
report can be seen at:
http://www.openser.org/docs/openser-performance-tests/

OpenSER is not used just by service providers. It can be used to construct SIP
appliances. There are SIP firewalls, Session Border Controllers, and load balancers
that are using code borrowed from the OpenSER project today. OpenSER was chosen
by LINKSYS for the One PBX platform, probably because of the small footprint and
high performance available.

OpenSER is flexible, portable, and extendable. Having being developed in ANSI
C it can be easily ported to any platform. It is very easy to extend by creating new
modules using C language. Recently new layers of programming were added. It is
possible to use Call Processing Language to simplify the routing scripts and Perl to
process requests in real time. WeSIP is an application program interface that allows
you to use Java and servlets to extend the OpenSER server creating a SIP application
server. Check WeSip at www.wesip.com.

Usage Scenarios
OpenSER is primarily used as a SIP proxy and Registrar. However, it can be used in
some other applications such as Proxy dispatches, Jabber Gateway, NAT Traversal
together with MediaProxy and RTPproxy. It supports IP versions 4 and 6 and is
able to serve multiple domains. OpenSER can be executed in Linux, Solaris, and
FreeBSD platforms.

OpenSER was created to be a SIP proxy. However, with the addition of new
modules, now OpenSER can be used in a several scenarios such as:

Modules Functionality
DISPATCHER, PATH Load balancing
MEDIAPROXY, RTPPROXY, NATHELPER Nat Traversal
PRESENCE Presence Server
IMC, XMPP Instant Messaging

Let's see the most common usage scenarios for OpenSER. In all these scenarios
OpenSER works like glue that binds all the SIP components together.

VoIP providers
Instant Messaging providers

•
•

Chapter 2

[33]

SIP Load Balancing
Embedded IP PBX
NAT Traversal
SIP.EDU

OpenSER Architecture

•
•
•
•

The SIP Express Router

[34]

Core and Modules
OpenSER is built on top of a core that is responsible for the basic functionality and
handling of SIP messages. The modules are responsible for the majority of OpenSER
functions. OpenSER modules expose their functionality inside OpenSER with new
commands and parameters used inside scripts. OpenSER is configured in a file called
openser.cfg. This configuration file controls which modules are loaded and their
respective parameters. All the SIP flow is controlled too in several routing blocks
defined in the file. The file openser.cfg is the OpenSER main configuration file.

Sections of the File openser.cfg
The openser.cfg file has seven sections:

Global definitions: This portion of the file contains several working
parameters for OpenSER including the listening ip:port pair for the SIP
service and debug level.
Modules: Contains a list of external libraries required to expose the
functionalities not available in the core. Modules are loaded with loadmodule.
Modules configuration: Modules have parameters that needs
to be set appropriately. These parameters are configured using
modparam(modulename, parametername, parametervalue).
Main routing block: The main routing block is where the SIP message
processing starts. It controls the processing of each message received.
Secondary routing blocks: The administrator can define new routing blocks
using the command route(). These routing blocks works like subroutines in
the OpenSER script.
Reply routing blocks: Reply routing blocks are used to process reply
messages, usually 200 OK.
Failure routing blocks: Failure routing blocks are used to process failure
conditions such as busy or timeout.

This file will be covere��� d in detail in the Chapters 4, 5, 6, 7, 8, and 9.

•

•

•

•

•

•

•

Chapter 2

[35]

Sessions, Dialogs, and Transactions
It is important to understand some SIP concepts used in OpenSER processing:

SIP transaction: A SIP message including any resends and their direct
responses (that is, REGISTER and 200 OK).
SIP dialog: A relation that exists for some time between two SIP entities
(that is, a dialog established between two UACs from the INVITE until the
BYE message).
SIP Session: A media flow (audio/video/text) between two SIP entities.

openser.cfg Message Processing
The openser.cfg is a script executed for each SIP message received. For example:
If the userA wants to talk to userB it sends an INVITE message. This message
is processed in the main routing block. The processing continues until it finds a
t_relay() (forward) or an sl_send_reply (send an error message) or eventually
discards the message at the end of the block using the exit() command.

SIP Proxy—Expected Behavior
It is important to understand the basic processing of a SIP proxy according to
RFC3261. Without this understanding it will be very difficult to configure a
Proxy server.

Each proxy will take routing decisions, modifying the request before sending it to the
next element. The responses will be routed over the same set of proxies traversed by
the original request in the reverse order.

A SIP proxy can operate in stateless or stateful mode. When a SIP proxy works as a
simple SIP packet forwarder, it forwards the packets to a single element determined
by the request. A proxy working in stateless mode discards any information about
the message after the message has been forwarded. This characteristic limits the
failure treatment and billing.

When OpenSER knows that the message 200 OK corresponds to a specific INVITE
we say that it is working in stateful mode. This means simply that you can now
manage the response in an onreply_route() block. With stateless processing each
message is handled without a context. Stateless processing is used in applications
like load balancing; it uses the command forward() in the script.

•

•

•

The SIP Express Router

[36]

When you need more sophisticated resources like billing, call forward, and
voicemail, you will need to use stateful processing. Each transaction will be
maintained in memory and failures, responses, and retransmissions will be
associated with this specific transaction. Stateful transactions are handled by the TM
(transaction) module and usually use the t_relay() command.

An often misunderstood concept is that the processing is stateful by transaction and
not by dialog. Thus, it is the stateful processing of an INVITE request until the 200
OK response (transaction) and not from the INVITE to the BYE request (dialog).

Stateful Operation

This is a simplified description of the stateful operation. You will find a complete and
more detailed description in the RFC3261 text. There is a close resemblance between
the openser.cfg sections and the figure above. However some processes are
manual, such as to check the Max-forwards header, while others are encapsulated
in a single command. To illustrate, when you call t_relay() all the forward request
processing as described is done automatically.

Chapter 2

[37]

When operating in stateful mode, a proxy is simply a SIP transaction processor and
all these processing steps are required:

Validate the request
Pre-process the routing information
Determine the request's target
Forward the request to the target
Process all responses

A stateful proxy creates a new server transaction for each new request received. Any
retransmissions of the request will then be handled by that server transaction.

Example: For each request traversing our SIP proxy we will:

Step 1: Request validation

Check the message size to avoid buffer overflows.
Check the Max-forwards header to detect loops.

Step 2: Routing information pre-processing

If there is a record-route header, process it.

Step 3: Determine the request target

Is it in the location database (registered users)?
Is there a route to the destination (gateway destinations)?
Is it directed to an external domain (external addresses)?

Step 4: Request forwarding

Call the function t_relay() and OpenSER will do all the job for
you statefully.

Step 5: Response processing

Usually this is done automatically by OpenSER. Sometimes you can use the
onreply_route[] section to handle some response. Example: in a "call
forward on busy" scenario, we could use the response 486 (Busy) to direct the
call to a voicemail server.

•

•

•

•

•

•

•

•

•

•

•

•

•

The SIP Express Router

[38]

Differences between Strict Routing and
Loose Routing
Loose and strict are different methods of routing SIP messages. Loose routing is
new in SIP version 2. When you use loose routing, the R-URI is never changed
and backwards compatibility is maintained with the older method (strict routing
RFC2543).

The problem with strict routing is in the process of specifying the entire proxy
set in the initial request before starting the SIP dialog. The processing throws
away the information contained in the received R-URI. The behavior of UAs with
outbound-proxy was problematic. The whole system would fail if there was a
failure in one of the elements.

The solution, is that loose routing is the correct method. It keeps the target separated
from the route. It allows each destination to route the packet and has a mechanism
to keep backward compatibility with strict routing. The support of loose routing is
indicated by the parameter ;lr.

LOOSE ROUTING
(RFC2543)

INVITE D
Route B,C

INVITE D
Route C INVITE D

B C

A D

Chapter 2

[39]

When the SIP server receives a message, it can decide if it wants to stay in the middle
or not (record-route). If the SIP server does not want to stay in the middle, it can pass
the information to the user agents' UAs to connect each other. After this process the
messages follow between the user agents.

If OpenSER wants to stay in the middle of the conversation (that is, for billing
purposes) it should insert a ROUTE header field using the function record_route().

Understanding SIP and RTP
To understand the following subsections, you should understand some things about
SIP and RTP. First, SIP is a signaling protocol that controls the call with methods
such as INVITE, BYE, and CANCEL. The SIP protocol includes in the INVITE
request information about the session (audio/video/text) using a protocol called
SDP (Session Description Protocol). The information contained in the SDP describes
one or more media flows configured between two user agents.

A SIP proxy never participates in the media flow, thus it is media agnostic. In other
words it supports calls with whichever media are specified by UA and gateways.
However, sometimes a B2BUA (back to back user agent) such as mediaproxy can be
installed at the same server to treat RTP audio (that is, NAT traversal mechanism).
The SDP protocol works in an Offer/Answer model. The SDP offer is embedded in
the INVITE request and the answer in the 200 OK response.

Example: Excerpt from Ethereal:

The SIP Express Router

[40]

The packet described in the preceding figure is an INVITE request. The INVITE
request embeds the SDP packet that describes the session information. We can see
there the INVITE generated on an eyeBeam phone. It is offering to use the Codec
G.729 at the UDP port 8558 for Audio (I conceal the IP address for security reasons).
The attribute rtpmap:101 telephone-event/8000 describes the DTMF forward method
being used (RFC2833). The other device, in this case a gateway, answers the offer in
the 200 OK reply.

Summary
In this chapter we have learned what OpenSER is and its main characteristics.
Now you can identify the openser.cfg configuration file and its configuration
blocks such as global definitions, load modules, module's parameters, main routing
block, routing blocks, reply routing block, and failure routing block. Each request
accepted by the proxy is processed according to the openser.cfg script. The script
is organized almost in the same sequence as the SIP stateful proxy processing.
Usually OpenSER operates as a loose router (SIP version 2). At the end we presented
concepts about SIP and SDP.

OpenSER Installation
The installation is the beginning of the work. It is very important to install OpenSER
correctly from the source code. You can install much faster from the Debian packages
or using the apt-get utility. However, the installation from the source code is much
more flexible allowing you to select which modules will be compiled. You cannot
install RADIUS accounting support from the Debian Packages. That's why we won't
use any shortcut to the installation. I strongly advise you to install using Debian.

If you choose to install on another platform, you will have to deal with init scripts
and fixing the installation of the other packages.

By the end of this chapter you will be able to:

Install Linux prepared for OpenSER
Download OpenSER source and its dependencies
Compile and install OpenSER with MySQL and RADIUS support
Start and stop OpenSER
Configure the Linux system to start OpenSER at boot time.

Hardware Requirements
There are no minimum hardware requirements for OpenSER. It will run in an
ordinary PC. The best bets we have are from performance tests realized on the 1.2
version. A PC with the following specifications was capable of 28 million complete
calls per hour. The testing server was an ordinary desktop, Intel Core2 CPU 6300 @
1.86GHz, 1GB of memory, 100Mbs Ethernet card. Unfortunately, there are currently
no formulas for OpenSER dimensioning. The correct hardware (CPU and memory)
must be obtained empirically.

•

•

•

•

•

OpenSER Installation

[42]

Software Requirements
The OpenSER software runs in a variety of Linux, BSD, and Solaris platforms.
Some generic packages are available for some varieties of Linux and Solaris. These
packages can be downloaded from www.openser.org. The following packages are
required to compile OpenSER.

gcc
bison or yacc (Berkley yacc)
flex
GNU make
GNU tar
GNU install

Some modules such as MYSQL, POSTGRES, RADIUS, and others will require
additional packages to compile. They will be presented in their respective chapters.

Lab—Installing Linux for OpenSER
All of these labs were prepared using a VMware virtual machine with Debian
Etch 4.0 installed. We have used as the Linux distro the Debian Etch, which can be
downloaded from:

http://cdimage.debian.org/debian-cd/4.0_r0/i386/

Warning
The instruction for this lab formats the computer. Back up all
the data before proceeding or run in some virtual machine such as
VMware or XEN.

Step 1: Insert the CD and boot the computer using the Debian Etch 4.0 CD. Press
ENTER to start the installation.

•
•
•
•
•
•

Chapter 3

[43]

In this screen, you can also select boot and installation options. Sometimes you will
need to choose some hardware-specific parameters for your installation. Press F1 for
help if needed.

Step 2: Choose a language.

Choose the language of your preference for the use in the installation process.

Step 3: Choose the keyboard layout.

OpenSER Installation

[44]

It is very common to have to choose a keyboard layout, mainly in European and
Asian countries.

Step 4: Choose the Hostname.

Choose the name of the server. It is important because later you will use this name to
access the server.

Step 5: Choose your Domain name.

Chapter 3

[45]

The domain name is obvious, but important, because OpenSER use domains to
distinguish users, so be sure to anwer correctly this screen.

Step 6: Choose a Partitioning method.

We could write a whole chapter about partitioning. Linux geeks, certainly, will use
the manual option. For the purposes of learning, you can simply use entire disk.
Consult a Linux specialist for the best partioning scheme for your server.

Step 7: Select disk to partition.

OpenSER Installation

[46]

Now, just select the disk being used to install Linux.

Step 8: Select all files in one partition.

Again, you can choose how to partition the system. Let's stick with the default
installation again. Some advanced users may want to change it a bit.

Step 9: Finish the partition changes to disk.

Chapter 3

[47]

Now, just finish the partitioning step and write changes to the disk. Never do it if
you want to preserve your disk. After the partitioning, all the pre-existing content
of the disk will be erased. So do it wisely. I used VMWare to test OpenSER; it is free
and creates a virtual machine, where I can work safely.

Step 10: Write changes to the disk.

Now, it comes to the scary part. Confirm that you want to erase all the content of the
disk. Well, think twice, or even three times before saying "Yes".

Warning
All data on the disk will be destroyed!

Step 11: Configure the time zone.

OpenSER Installation

[48]

Select the time zone. It is important to have the correct time zone, mainly for reports.
If you don't do it correctly, you will end up with voicemail messages with the
wrong time.

Step 12: Set the Root password to "openser".

Choose a password for your root user. This is the most important password on
the system.

Step 13: Re-enter password to verify.

Chapter 3

[49]

Please, re-enter the password for confirmation purposes. Try to use a password hard
to crack (8 characters minimum, letters, numbers, and some kind of special character
such as "*"or "#").

Step 14: Enter the full name for the user account as "openser".

Some systems require you to create at least one user. Let's do it, starting with the full
user name.

Step 15: Enter the user name for user account as "openser".

OpenSER Installation

[50]

Now the name used to log on the user on the system.

Step 16: Enter the password for the user account "openser" and re-enter to confirm.

Enter the password and confirm it. Again, try to use a password hard to crack.

Step 17: Configure the package manager. Select Yes to use a mirror.

Chapter 3

[51]

During the process of installation, we will use several packages distributed
by Debian.

Step 18: Select a mirror country.

This screen will allow you to select from where you will download the packages.

Step 19: Select ftp.debian.org or your preferred mirror.

OpenSER Installation

[52]

Select the nearest one to speed up the download of the packages.

Step 20: Leave the HTTP proxy blank or fill with the appropriate parameters if you
use an HTTP proxy.

If you use an HTTP proxy such as Squid or Microsoft ISA Server, please fill in the
appropriate parameters to allow internet access for the downloads.

Step 21: Select Yes if you want to to participate in the package popularity survey, or
No if you don't.

Chapter 3

[53]

The popularity package survey generates statistics about the most
downloaded packages.

Step 22: Select Standard system.

Debian comes in several pre-defined installations such as Desktop. The desktop
installation, as an example installs a GUI for Linux such as GNOME or KDE. We don't
need this for our installation. So please choose just Standard system. Later we will
install manually components such as the Web Server, Mail Server, and SQL Database.

Step 23: Select Yes to install the GRUB boot loader.

OpenSER Installation

[54]

GRUB is a boot load manager for your server. It allows you to dual boot systems and
to do some tricks during the boot process.

Step 24: Finish the installation.

Finish the installation and boot the system.

The system will reboot automatically.

Step 25: Just after the reboot install SSH.

apt-get install ssh

Downloading and Installing OpenSER v1.2
Even though it is easier to install the OpenSER using the Debian packages we will go
through the compilation process. It is more flexible and we may need to recompile
OpenSER a few times in this material to include other modules. The installation
process step by step follows:

Step 1: Install the dependencies.

apt-get install gcc bison flex make openssl libmysqlclient-dev
libradiusclient-ng2 libradiusclient-ng-dev mysql-server

Chapter 3

[55]

The MySQL server is not really a dependency, but we will install it at this
moment to make things easier.

Step 2: Download the source package and decompress it.

cd /usr/src

wget http://www.openser.org/pub/openser/1.2.2/src/openser-1.2.2-tls_
src.tar.gz

tar -xzvf openser-1.2.2-tls_src.tar.gz

Step 3: Use your favorite Linux editor to edit the Makefile

Remove from the "exclude_modules?=" line the mysql and any radius-related
modules. This will make the compilation process include MySQL and RADIUS.

cd /usr/src/openser-1.2.2-tls/

vi Makefile

File before making changes:

exclude_modules?= jabber cpl-c mysql pa postgres osp unixodbc \
 avp_radius auth_radius\
 group_radius uri_radius xmpp \
 presence pua pua_mi pua_usrloc \
 mi_xmlrpc perl snmpstats

File after making changes:

exclude_modules?= jabber cpl-c pa postgres osp unixodbc \
 xmpp \
 presence pua pua_mi pua_usrloc \
 mi_xmlrpc perl snmpstats

Step 4: Compile and install the core and modules.

cd openser-1.2.2-tls

make prefix=/ all

make prefix=/ install

Step 5: Make the required adjustments:

mkdir /var/run/openser

OpenSER Installation

[56]

Lab—Running OpenSER at the Linux Boot
Step 1: Include openSER in the linux boot.

cd /usr/src/openser-1.2.2-tls/packaging/debian

cp openser.default /etc/default/openser

cp openser.init /etc/init.d/openser

update-rc.d openser defaults 99

Step 2: Edit the /etc/openser/openser.cfg file and remove the line fork=no
(even if it has C-style remarks). The init script looks for the instruction fork=no, even
if commented.

Step 3: Make sure that the script openser.init has the necessary permissions

cd /etc/init.d

chmod 755 openser

Step 4: Edit /etc/default/openser.cfg, change the memory parameter to 128MB
and the RUN_OPENSER to yes.

Step 5: Edit the init script to make sure that the daemon is pointing to the
right directory:

vi /etc/init.d/openser

File before making changes:

DAEMON=/usr/sbin/openser

File after making changes:

DAEMON=/sbin/openser

Step 6: Restart the computer to see if OpenSER starts. Confirm using:

ps-ef |grep openser.

It is highly recommended that you change the username and password
used to run openser in the /etc/init.d/openser file.

OpenSER v1.2 Directory Structure
After the installation, OpenSER will create a file structure. It is important to
understand the file structure to locate the main folders where the system is stored.
You will need this information to update or remove the software.

Chapter 3

[57]

Configuration Files (etc/openser)
openser-1:/etc/openser# ls -l

total 12
-rw-r--r-- 1 root root 1804 2007-09-10 14:02 dictionary.radius
-rw-r--r-- 1 root root 4077 2007-09-10 14:05 openser.cfg
-rw-r--r-- 1 root root 1203 2007-09-10 14:02 openserctlrccd

Modules (/lib/openser/modules)
openser-1:/lib/openser/modules# ls

acc.so domain.so msilo.so sms.so
alias_db.so enum.so mysql.so speeddial.so
auth_db.so exec.so nathelper.so sst.so
auth_diameter.so flatstore.so options.so statistics.so
auth_radius.so gflags.so path.so textops.so
auth.so group_radius.so pdt.so tm.so
avpops.so group.so permissions.so uac_redirect.so
avp_radius.so imc.so pike.so uac.so
dbtext.so lcr.so registrar.so uri_db.so
dialog.so mangler.so rr.so uri.so
dispatcher.so maxfwd.so seas.so usrloc.so
diversion.so mediaproxy.so siptrace.so xlog.so
domainpolicy.so mi_fifo.so sl.socd /lib/openser/modules

Binaries (/sbin)
openser-1:/sbin# ls -l op*

-rwxr-xr-x 1 root root 2172235 2007-09-10 14:02 openser
-rwxr-xr-x 1 root root 41862 2007-09-10 14:02 openserctl
-rwxr-xr-x 1 root root 38107 2007-09-10 14:02 openser_mysql.sh
-rwxr-xr-x 1 root root 13562 2007-09-10 14:02 openserunixcd /sbin

Log Files
The initialization log can be seen at syslog (/var/log/syslog):

Sep 10 14:25:56 openser-1 openser: init_tcp: using epoll_lt as the io watch
method (auto detected)
Sep 10 14:25:56 openser-1 /sbin/openser[7791]: INFO: statistics manager
successfully initialized
Sep 10 14:25:56 openser-1 /sbin/openser[7791]: StateLess module - initializing
Sep 10 14:25:56 openser-1 /sbin/openser[7791]: TM - initializing...
Sep 10 14:25:56 openser-1 /sbin/openser[7791]: Maxfwd module- initializing
Sep 10 14:25:56 openser-1 /sbin/openser[7791]: INFO:ul_init_locks: locks array

OpenSER Installation

[58]

size 512
Sep 10 14:25:56 openser-1 /sbin/openser[7791]: TextOPS - initializing
Sep 10 14:25:56 openser-1 /sbin/openser[7791]: INFO: udp_init: SO_RCVBUF is
initially 109568
Sep 10 14:25:56 openser-1 /sbin/openser[7791]: INFO: udp_init: SO_RCVBUF is
finally 262142
Sep 10 14:25:56 openser-1 /sbin/openser[7791]: INFO: udp_init: SO_RCVBUF is
initially 109568
Sep 10 14:25:56 openser-1 /sbin/openser[7791]: INFO: udp_init: SO_RCVBUF is
finally 262142

Sep 10 14:25:56 openser-1 /sbin/openser[7792]: INFO:mi_fifo:mi_child_
init(1): extra fifo listener processes created

Startup Options
OpenSER can be started using the init scripts or using the openserctl utility. If you
start openser using init scripts, you can only stop using init scripts. The same is valid
if you start using openserctl utility.

Starting, stopping, and restarting OpenSER using the init scripts:

/etc/init/d/openser start|stop|restart

Starting, stopping, and restarting OpenSER using

/etc/init/d/openserctl start|stop|restart

The OpenSER executable has several startup options. These options, show, below,
allow you to change the configuration of the DAEMON. Some of the most
useful are:

•	 "-c" to check the configuration file

•	 "-D –E dddddd" to check module loading (don't use for production, it binds
only the first interface)

There are lots of others to allow you to fine tune your configuration. For each option
there is a correspondent core parameter that you can put in the configuration file.

Usage: openser -l address [-p port] [-l address [-p port]...] [options]

Options:

 -f file Configuration file (default //etc/openser/openser.cfg)

 -c Check configuration file for errors

 -C Similar to '-c' but in addition checks the flags of

 exported functions from included route blocks

 -l address Listen on the specified address/interface (multiple -l

Chapter 3

[59]

 mean listening on more addresses). The address format

 is [proto:]addr[:port], where proto=udp|tcp and

 addr= host|ip_address|interface_name. E.g: -l locahost,

 -l udp:127.0.0.1:5080, -l eth0:5062 The default

 behavior is to listen on all the interfaces.

 -n processes Number of child processes to fork per interface

 (default: 8)

 -r Use dns to check if is necessary to add a "received="

 field to a via

 -R Same as '-r' but use reverse dns;

 (to use both use '-rR')

 -v Turn on "via:" host checking when forwarding replies

 -d Debugging mode (multiple -d increase the level)

 -D Do not fork into daemon mode

 -E Log to stderr

 -T Disable tcp

 -N processes Number of tcp child processes (default: equal to '-n')

 -W method poll method

 -V Version number

 -h This help message

 -b nr Maximum receive buffer size which will not be exceeded

 by auto-probing procedure even if OS allows

 -m nr Size of shared memory allocated in Megabytes

 -w dir Change the working directory to "dir" (default "/")

 -t dir Chroot to "dir"

 -u uid Change uid

 -g gid Change gid

 -P file Create a pid file

 -G file Create a pgid file

 -x socket Create a unix domain socket

OpenSER Installation

[60]

Summary
In this chapter you have learned how to install and prepare Linux for the OpenSER
installation. We have downloaded and compiled OpenSER and MySQL modules.
After the installation we included the OpenSER init file to start OpenSER at
boot time.

OpenSER Standard
Configuration

The OpenSER standard configuration file is installed at /etc/openser/openser.cfg.
It is one of the simplest configuration files for OpenSER. It is the ideal script to start
explaining the functioning of OpenSER. There are several sections that you should be
familiar with, along with basic modules, parameters, and functions.

By the end of this chapter you will be able to:

Identify the sections of the openser.cfg configuration file
Identify the limitations of the standard configuration
Use the ngrep utility to track SIP transactions
Use the XLOG module to log the route processing
Use the append_hf command to mark packets tracked in the ngrep utility

The standard configuration is a good starting point. It has a minimal functionality,
it does not support authentication, so you can connect your SIP phones without a
password. Anyway, you can call from one phone to another and we will test it later.

•

•

•

•

•

OpenSER Standard Configuration

[62]

Where Are We?
Again, the solution for a VoIP provider has many components. To avoid loosing
perspective, we will show this picture in most chapters. In this chapter, we are still
working with the SIP proxy component in its standard configuration.

Analyzing the Standard Configuration
Below is shown the standard configuration of OpenSER version 1.2.2. In this section
we will start to describe each line of the standard configuration with its commands
and functions:

#
$Id: openser.cfg 1676 2007-02-21 13:16:34Z bogdan_iancu $
#
#simple quick-start config script
#Please refer to the Core CookBook at http://www.openser.org/dokuwiki/
doku.php
#for a explanation of possible statements, functions and parameters.
#
----------- global configuration parameters ------------------------
debug=3 # debug level (cmd line: -dddddddddd)
fork=yes
log_stderror=no # (cmd line: -E)

Chapter 4

[63]

children=4

port=5060

#uncomment the following lines for TLS support
#disable_tls = 0
#listen = tls:your_IP:5061
#tls_verify_server = 1
#tls_verify_client = 1
#tls_require_client_certificate = 0
#tls_method = TLSv1
#tls_certificate = "//etc/openser/tls/user/user-cert.pem"
#tls_private_key = "//etc/openser/tls/user/user-privkey.pem"
#tls_ca_list = "//etc/openser/tls/user/user-calist.pem"

------------------ module loading ----------------------------------

#set module path
mpath="/lib/openser/modules/"

#Uncomment this if you want to use SQL database
#loadmodule "mysql.so"

loadmodule "sl.so"
loadmodule "tm.so"
loadmodule "rr.so"
loadmodule "maxfwd.so"
loadmodule "usrloc.so"
loadmodule "registrar.so"
loadmodule "textops.so"
loadmodule "mi_fifo.so"

Uncomment this if you want digest authentication
mysql.so must be loaded !
#loadmodule "auth.so"
#loadmodule "auth_db.so"

----------------- setting module-specific parameters ---------------

-- mi_fifo params --

modparam("mi_fifo", "fifo_name", "/tmp/openser_fifo")

-- usrloc params --

modparam("usrloc", "db_mode", 0)

Uncomment this if you want to use SQL database
for persistent storage and comment the previous line
#modparam("usrloc", "db_mode", 2)

-- auth params --
Uncomment if you are using auth module
#
#modparam("auth_db", "calculate_ha1", yes)

OpenSER Standard Configuration

[64]

#
If you set "calculate_ha1" parameter to yes (which true in this
config),
uncomment also the following parameter)
#
#modparam("auth_db", "password_column", "password")

-- rr params --
add value to ;lr param to make some broken UAs happy
modparam("rr", "enable_full_lr", 1)

------------------------- request routing logic -------------------

main routing logic

route{

 # initial sanity checks -- messages with
 # max_forwards==0, or excessively long requests
 if (!mf_process_maxfwd_header("10")) {
 sl_send_reply("483","Too Many Hops");
 exit;
 };

 if (msg:len >= 2048) {
 sl_send_reply("513", "Message too big");
 exit;
 };

 # we record-route all messages -- to make sure that
 # subsequent messages will go through our proxy; that's
 # particularly good if upstream and downstream entities
 # use different transport protocol
 if (!method=="REGISTER")
 record_route();

 # subsequent messages withing a dialog should take the
 # path determined by record-routing
 if (loose_route()) {
 # mark routing logic in request
 append_hf("P-hint: rr-enforced\r\n");
 route(1);
 };

 if (!uri==myself) {
 # mark routing logic in request
 append_hf("P-hint: outbound\r\n");
 # if you have some interdomain connections via TLS
 #if(uri=~"@tls_domain1.net") {
 # t_relay("tls:domain1.net");
 # exit;

Chapter 4

[65]

 #} else if(uri=~"@tls_domain2.net") {
 # t_relay("tls:domain2.net");
 # exit;
 #}
 route(1);
 };

 # if the request is for other domain use UsrLoc
 # (in case, it does not work, use the following command
 # with proper names and addresses in it)
 if (uri==myself) {

 if (method=="REGISTER") {

 # Uncomment this if you want to use digest
 authentication
 #if (!www_authorize("openser.org",
 "subscriber")) {
 # www_challenge("openser.org", "0");
 # exit;
 #};

 save("location");
 exit;
 };

 lookup("aliases");
 if (!uri==myself) {
 append_hf("P-hint: outbound alias\r\n");
 route(1);
 };

 # native SIP destinations are handled using our
 USRLOC DB
 if (!lookup("location")) {
 sl_send_reply("404", "Not Found");
 exit;
 };
 append_hf("P-hint: usrloc applied\r\n");
 };

 route(1);
}

route[1] {
 # send it out now; use stateful forwarding as it works
 # reliably even for UDP2TCP
 if (!t_relay()) {
 sl_reply_error();
 };
 exit;
}

OpenSER Standard Configuration

[66]

This standard configuration is the simplest working configuration. We will start with
it and then progressively include new commands and functions in the following
chapters. With this configuration clients can register (without authentication) and
UACs can communicate to each other. The Registrar, Location, and Proxy servers are
working with a minimal configuration. Below we will explain some excerpts from
the script:

debug=3 # debug level (cmd line: -dddddddddd)

Set log level: this is number between -3 and 4. The default is 2. The higher the
number, the more will be the information written to the log. With 4 the system's
performance can become sluggish. The log levels are:

L_ALERT (-3)—this level should be used to report only errors that require
immediate action.
L_CRIT (-2)—this level should be used to report only errors that cause a
critical situation.
L_ERR (-1)—this level should be used to report errors during data processing
that do not cause system malfunctioning.
L_WARN (1)—this level should be used to write warning messages.
L_NOTICE (2)—this level should be used to report unusual situations.
L_INFO (3)—this level should be used to write informational messages.
L_DBG (4)—this level should be used to write messages for debugging.

	 fork=yes

The fork parameter defines if the OpenSER processes will run in background or
foreground modes. To operate in background set fork=yes. Sometimes you will the
find it useful to start it in the foreground to locate script errors.If fork is disabled,
OpenSER will not be able to listen on more than one interface and TCP/TLS support
will be automatically disabled. In a single process mode, only one UDP interface
is accepted.

log_stderror=no # (cmd line: -E)

If set to yes, the server will print its debugging information to standard error output.
If set to no, syslog will be used.

children=4

The children core parameter informs OpenSER of how many child processes per
interface to create the process incoming requests. Four processes seem to be a good
starting point for most systems. This parameter only applies to UDP interfaces. It has
no impact on TCP processes.

port=5060

•

•

•

•

•

•

•

Chapter 4

[67]

This is the default port to be used if none is specified in the listen parameter.

mpath="/lib/openser/modules/"

Set the module search path. This can be used to simplify the loading of modules.

loadmodule "sl.so"
loadmodule "tm.so"
loadmodule "rr.so"
loadmodule "maxfwd.so"
loadmodule "usrloc.so"
loadmodule "registrar.so"
loadmodule "textops.so"
loadmodule "mi_fifo.so"

The lines above load OpenSER external modules. At this time, only the minimum
required modules are loaded. Additional functionality will need other modules such
as RADIUS and MYSQL to be loaded. All modules have a README file describing
their functions.

modparam("mi_fifo", "fifo_name", "/tmp/openser_fifo")

The name of the FIFO file to be created for listening and reading external commands.

modparam("usrloc", "db_mode", 0)

The modparam core command configures the corresponding module. The usrloc
module above is responsible for the location service. When a client registers, it saves
the location information, also known as AOR (Address of Record) to the location
indicated by the db_mode parameter. In this case 0, means memory. So if you turn
off your server, you will loose all your register records. The location of this table
depends on the value of the db_mode parameter. A db_mode set to 0 indicates that
this data will not be saved into a database. In other words, if OpenSER is turned off,
all the records are lost.

modparam("rr", "enable_full_lr", 1)

The statement above sets the enable_full_lr parameter of the module rr (Record
Routing) to 1. It tells OpenSER to be fully compliant with older SIP clients that do not
manage record_route header fields. If set to 1 then ;lr=on instead of just ;lr will
be used.

route {

OpenSER Standard Configuration

[68]

This is the beginning of the routing logic for a SIP request. The block starts with a {.
In this block the SIP requests will be processed. An overview can be seen below:

 # initial sanity checks -- messages with
 # max_forwards==0, or excessively long requests
 if (!mf_process_maxfwd_header("10")) {
 sl_send_reply("483","Too Many Hops");
 exit;
 };

 if (msg:len >= 2048) {
 sl_send_reply("513", "Message too big");
 exit;
 };

When a request gets into the main routing block some checks are done.

The first check is about the maximum number of forwards. To avoid loops, we use
the function mf_process_maxfwd_header() to check how many SIP hops the packet
has passed. If a loop is found, the script sends a message "483 Too many hops" using
the function sl_send_reply().

The msg:len is a function of the OpenSER core that returns the length in bytes of the
SIP request. This is a standard check to impose some limits on the message size.

 if (!method=="REGISTER")
 record_route();

If the method is different from REGISTER, OpenSER will record-route. This
instruction tells the SIP server to stay in the path of SIP requests between two UACs.
The record_route() function simply adds a new record-route header field.

Subsequent messages within a dialog should take the
 # Path determined by record-routing
 if (loose_route()) {
 # mark routing logic in request
 append_hf("P-hint: rr-enforced\r\n");
 route(1);
 };

The loose_route() function tests to see if the request will be routed using the
record-route header fields. Requests identified by this function will be routed using
the content of the top record-route header field.

Chapter 4

[69]

If the request is from the same dialog, we will get into the if clause and forward
the packet. Then we should simply forward the request. We do this by calling the
route(1) secondary routing block were the t_relay() function will be invoked.

A new function called append_hf will add a header field with a hint that the request
was processed according to the record-route header field (rr-enforced).

 if (!uri==myself) {
 # mark routing logic in request
 append_hf("P-hint: outbound\r\n");
 # if you have some interdomain connections via TLS
 #if(uri=~"@tls_domain1.net") {
 ����������������������������������� # t_relay("tls:domain1.net");
 ������������� # exit;
 #} else if(uri=~"@tls_domain2.net") {
 ����������������������������������� # t_relay("tls:domain2.net");
 ������������� # exit;
 #}
 route(1);
 };

The code above will treat the requests for a domain not served by our proxy,
if(!uri==myself), forwarding the request by calling route(1) where the
t_relay will be invoked. This proxy by default is working as an open relay. In the
following chapters we will discuss how to improve the handling of outbound calls.
It is important to forward requests to other proxies; however, some identity checks
should be in place. Now, we will treat the requests directed to the domains handled
by our SIP proxy.

 if (uri==myself) {
 if (method=="REGISTER") {
 # Uncomment this if you want to use digest
 authentication
 #if (!www_authorize("openser.org",
 "subscriber")) {
 �� # www_challenge("openser.org", "0");
 # exit;
 #};
 save("location");
 �����exit;
 };

OpenSER Standard Configuration

[70]

If the request method is REGISTER, save the AOR to the location table using the
save("location"). It is important to understand two concepts. At this time
authentication is disabled (www_authorize commented) and the location database is
not persistent because we don't have a database installed with the SIP proxy.

 lookup("aliases");
 if (!uri==myself) {
 append_hf("P-hint: outbound alias\r\n");
 route(1);
 };

Aliases are alternative URIs (that is, 8590@voffice.com.br can be an alias for the
original URI flavio@voffice.com.br). The lookup("aliases") function simply
seeks the canonical URI for the URI presented in the request. If the URI is found,
it replaces the R-URI before to proceed. The resulting URI can be located inside or
outside our domain. If it is outside, the system simply forwards the packet to the SIP
proxy responsible for the domain. If it is outside it proceeds the request processing.

 if (!lookup("location")) {
 sl_send_reply("404", "Not Found");
 exit;
 };
 append_hf("P-hint: usrloc applied\r\n");

The lookup("location") function will try to recover the (AOR) of the R-URI.
If the AOR is located (the UA is registered) it will change the R-URI by the
ip-address of the UA. If the AOR is not found we will simply send back an error
message ("404 Not Found").

 route(1);

If the AOR is found we will end up with the route(1);

route[1] {
 # send it out now; use stateful forwarding as it works
reliably
 # even for UDP2TCP
 if (!t_relay()) {
 sl_reply_error();
 };
 exit;
}

Chapter 4

[71]

Finally, the routing block is invoked. The t_relay() function forwards the
request statefully based on the Request URI. The domain part is resolved using
DNS helpers such as NAPTR, SRV, and A records. This function is exposed by
the TRANSACTION module (tm.so) and is responsible for sending the requests
and handling any resends and responses. If the request could not be sent to the
destination successfully, an error message will be generated automatically by the
t_relay() function. The function sl_reply_error() will send a reply back to the
UA if a failure occurs.

Using the Standard Configuration
In this lab, we will use a protocol analyzer to capture a complete SIP call. We will
analyze the headers and the message flow. You can create this environment with a
PC and two UACs. The UACs can be Softphones, ATAs, or even IP phones.

Adapt this lab to your needs.
1.	 Start capturing packets using ngrep. If it is not installed,

install it using:
 apt-get install ngrep

2.	 To capture the packets use:
 ngrep –p –q –W byline port 5060 >test.txt

3.	 Configure the UACs (Softphones, IP phones, or ATAs).

OpenSER Standard Configuration

[72]

Configure the first UAC with the following configuration:

 sip proxy 10.1.x.y – IP of your proxy
 user: 1000
 password: 1000

Configure the second UAC to the following configuration:

 sip proxy 10.1.x.y – IP of your proxy
 user: 1001
 password 1001

After configuring the devices, you will need to register the IP Phone. Not all devices
do auto registering.

1.	 Check if the phone is registered using:

	 openserctl ul show

2.	 At the first UAC dial 1001. The second UAC will ring.
3.	 Verify this capture does not exhibit the "407 - Proxy authentication

required" error for the INVITE request and the "401- Unauthorized" error
for the REGISTER requests. This proves that an authentication is not
being requested.

7.	 You can see the capture by issuing the command:

	 more test.txt

Routing Basics
It is not easy to figure out how to route SIP packets. We will present in this section
some of the basic concepts to route SIP packets over the proxy server. The first
important concept is the one involving transactions and dialogs.

Transactions and Dialogs
A transaction starts with a request and finishes, usually, with a response code. The
branch parameter in the VIA header field identifies a transaction. A dialog may start
with an INVITE transaction and finish with a BYE transaction. A dialog is identified
by the combination of the FROM, TO, and CALL-ID header fields. Not all SIP
methods start a dialog, the REGISTER and MESSAGE methods do not.

Chapter 4

[73]

Initial and Sequential Requests
It is important to understand the difference between initial requests and sequential
requests. For initial requests, you have to decide how to route using a discovery
mechanism, usually based on DNS or in a location table.

The initial request records the routing information using the VIA header and if you
have record-routing enabled, in the ROUTE headers too. Inside a transaction, the
packets are routed back using the VIA header field returning to every proxy passed
before. Subsequent requests are routed using the CONTACT header field. However,
if you had turned on record-routing, the subsequent requests will be routed back
using the route set discovered.

You can distinguish between initial and sequential requests using the TAG
parameter in the TO header field.

Routing in a Context of a Transaction
Inside a transaction all requests are routed using the VIA header field. So, all
responses will go through the proxy before getting to the final destination. If you
route the request using the function t_relay(), the SIP proxy operates in the stateful
mode, so you can handle responses and failures using the sections onreply_route[]
and failure_route[].

OpenSER Standard Configuration

[74]

Routing in the Context of a Dialog
Subsequent requests in the same dialog are routed directly peer-to-peer using
the CONTACT header field. Most times you will want to force the subsequent
transactions, such as BYE, through the proxy for billing and dialog control. You can
do this by enabling a resource called record-routing. Doing this will instruct the
script to record-routes.

Later, you may use the pre-recorded routes, also known as route set, to forward the
subsequent requests. This is the most common configuration and it is in the default
configuration file.

Lab—Tracking a Complete Dialog
In this lab, we will use a simplified script to understand routing concepts. We will
use the function append_hf() to append a header field to the packet marking the
point in the script where the packet was processed.

Chapter 4

[75]

Step 1: Use the script below (openser.chapter4-2). Restart OpenSER and the re-
register the phones.

route{
	 # All messages, except for REGISTER will pass here
	 if (!method=="REGISTER") record_route();

	 # subsequent messages withing a dialog should take the
	 # path determined by record-routing
	 if (loose_route()) {
		 # mark routing logic in request
		 append_hf("P-hint: (1)rr-enforced\r\n");
		 route(1);
	 };

	 # We will route only intra-domain requests
	 if (!uri==myself) {
		 exit();
	 };

	 # main routing of intra-domain requests
	 if (uri==myself) {

OpenSER Standard Configuration

[76]

		 if (method=="REGISTER") {
			 save("location");
			 exit;
		 };

		 # native SIP destinations are handled using our USRLOC DB
		 if (!lookup("location")) {
			 sl_send_reply("404", "Not Found");
			 exit;
		 };
		 append_hf("P-hint: (2)usrloc applied\r\n");
	 };
	 route(1);
}

route[1] {
	 # send it out now; use stateful forwarding
	 t_on_reply("1");
	 t_on_failure("1");
 if (!t_relay()) {
		 sl_reply_error();
	 };
	 exit;
}

onreply_route[1] {
	 append_hf("P-hint: (3)passed thru onreply_route[1]\r\n");
}

failure_route[1] {
	 append_hf("P-hint: (4)passed thru failure_route[1]\r\n");
}

Step 2: Use ngrep to capture the requests and responses to a file

ngrep –p –q –W byline port 5060 >rr-stateful

Step 3: Start a call from 1000 to 1001 (or any other phone registered)

Step 4: Stop ngrep using CTRL-C

Check the packets using a text editor and see the P-Hint header fields. They are
supposed to be equal to the figure printed in the beginning of the Lab.

Chapter 4

[77]

Lab—Running Stateless
If you replace the function t_relay() by the function forward() you will use the
SIP proxy in the stateless mode. Everything will work, but you won’t be able to
process replies. The Proxy now does not correlate requests and responses in the same
transactions. The responses are processed using the VIA header field as usual.

Step 1: Replace the t_relay() function by the forward() function.

Replace:

if (!t_relay()) {
		 sl_reply_error();
};

By:

forward()

Step 2: Restart OpenSER and re-register the phones

Step 3: Use ngrep to capture the requests and responses to a file

ngrep –p –q –W byline port 5060 >rr-stateless

Step 4: Make a call from 1000 to 1001

Step 5: After ending the call, stop ngrep.

Step 6: Use a text editor to check the the file named rr-stateless. You will notice
that responses now does not have the P-Hint header field. This indicates that they
were not being processed in the onreply_route section. So, if you use stateless
processing, you cannot do anything with the replies, unless forward them to
the destination.

Lab—Disabling record-route
In this lab we will stop recording the routes. The subsequent requests in the dialog
will go directly from one phone to another bypassing the SIP proxy. They use the
information in the CONTACT header field to do so.

Step 1: Comment the line responsible for record routing

#if (!method=="REGISTER") record_route();

Step 2: Restart OpenSER and re-register the phones

Step 3: Use ngrep to capture the requests and responses to a file
ngrep –p –q –W byline port 5060 >norr-stateless

OpenSER Standard Configuration

[78]

Step 4: Make a call from 1000 to 1001

Step 5: After ending the call, stop ngrep.

Step 6: Use a text editor to check the file norr-stateless. You will notice that now,
you can’t see the BYE and ACK requests. This happens because now, they are going
directly from one peer to another. If you want to bill the calls, that’s the behavior you
simply don’t want to have from your SIP proxy.

Summary
In this chapter you have learned some of the statements for each of the sections of the
openser.cfg file. This is the simplest configuration file. In the next chapters we will
increase the functionality and the complexity of the script. This chapter served as a
starting point to develop more advanced scripts. Even though it is simple the script
allows you to connect two phones and dial to each other.

Adding Authentication
with MySQL

In this chapter we will learn how to use several database back-ends to authenticate
SIP requests and provide persistence of data such as location and alias tables.
Primarily, we will do everything with MySQL. This chapter is divided in two parts.
In the first one we will learn how to implement authentication and in the second one
we will learn how to deal with calls in each direction.

By the end of this chapter you will be able to:

Configure MySQL to authenticate SIP devices
Use the openserctl utility for basic operations such as adding and
removing users
Change the openser.cfg script to configure MySQL authentication
Implement persistence for the subscriber table
Implement persistence for the location tables
Restart the server without loosing the location records
Deal correctly with inbound-to-inbound, inbound-to-outbound, outbound-
to-inbound, and outbound-to-outbound sessions.
Deal correctly with CANCEL Requests.

•

•

•

•

•

•

•

•

Adding Authentication with MySQL

[80]

Where Are We?
Now, we are still focusing on the SIP proxy. However, we are going to include a
new component, the Database. OpenSER can use MySQL and PostgreSQL. For this
book, we have chosen to work with MySQL. It is, by far, the most used database
for OpenSER.

The AUTH_DB Module
Database-based authentication is performed by the module AUTH_DB. Other types
of authentication such as radius and diameter can be performed using AUTH_RADIUS
and AUTH_DIAMETER respectively. AUTH_DB works together with database modules
such as MySQL and PostgreSQL. AUTH_DB has some parameters that are not explicitly
declared in the script. Let's see the default parameters for the AUTH_DB module:

Parameter Default Description
db_url "mysql://openserro:openserro@

localhost/openser"
URL of the database

user_column "username" Name of the column holding
domains of users

domain_column "domain" Name of the column holding
domains of users

password column "ha1" Name of the column holding
passwords

Chapter 5

[81]

Parameter Default Description
password_column2 "ha1b" Name of the column holding

pre-calculated HA1 strings
that were calculated including
the domain in the username.

calculate_ha1 0 (server assumes that ha1
strings are already calculated in
the database)

Tell the server whether it
should expect plaintext
passwords in the database
or not.

use_domain 0 (domains won't be checked
when looking up in the
subscriber database)

Use this parameter set to 1
if you have a multi-domain
environment.

load_credentials "rpid" Specifies the credentials to
be fetch from the database
when the authentication
is performed. The loaded
credentials will be stored
in AVPs.

The AUTH_DB module exports two functions.

www_authorize(realm, table)

This function is used in the REGISTER authentication that occurs in accordance
with RFC2617.

proxy_authorize(realm, table)

The function verifies credentials according to RFC2617 for the non-REGISTER
requests. If the credentials are verified successfully, the credentials will be marked
as authorized.

You have to use www_authorize when your server is the endpoint of the request.
Use proxy_authorize when the request's final destination is not your server and
you will forward the request ahead, actually working as a proxy.

The difference between www_authorize and proxy_authorize is that if the request's
end point is you (REGISTER) you use www_authorize.

The REGISTER Authentication Sequence
The script should authenticate REGISTER and INVITE messages. Let's show how
this happens before changing the openser.cfg script. When OpenSER receives the
REGISTER message it checks for the existence of the Authorize header. If it does not
find one, it will challenge UAC for the credentials and exit.

Adding Authentication with MySQL

[82]

After being challenged the UAC should send a REGISTER message with an Authorize
header field.

Register Sequence
(Packets Captured by ngrep)
The register process can be seen in the packet capture shown below:

U 192.168.1.119:29040 -> 192.168.1.155:5060
REGISTER sip:192.168.1.155 SIP/2.0.
Via: SIP/2.0/UDP 192.168.1.119:29040;branch=z9hG4bK-d87543-13517a5a8218ff45-1--d87543-
;rport.
Max-Forwards: 70.
Contact: <sip:1000@192.168.1.119:29040;rinstance=2286bddd834b3cfe>.
To: "1000"<sip:1000@192.168.1.155>.
From: "1000"<sip:1000@192.168.1.155>;tag=0d10cc75.
Call-ID:
e0739d571d287264NjhiZjM2N2UyMjhmNDViYTgzY2I4ODMxYTVlZTY0NDc..
CSeq: 1 REGISTER.
WWW-Authenticate: Digest realm="192.168.1.155", nonce="46263864b3abb96a423a7ccf052fa68
d4ad5192f".
Server: OpenSER (1.2.0-notls (i386/linux)).
Content-Length: 0.

U 192.168.1.119:29040 -> 192.168.1.155:5060
REGISTER sip:192.168.1.155 SIP/2.0.
Via: SIP/2.0/UDP 192.168.1.119:29040;branch=z9hG4bK-d87543-da776d09bd6fcb65-1--d87543-
;rport.
Max-Forwards: 70.
Contact: <sip:1000@192.168.1.119:29040;rinstance=2286bddd834b3cfe>.
To: "1000"<sip:1000@192.168.1.155>.
From: "1000"<sip:1000@192.168.1.155>;tag=0d10cc75.
Call-ID: e0739d571d287264NjhiZjM2N2UyMjhmNDViYTgzY2I4ODMxYTVlZTY0NDc..
CSeq: 2 REGISTER.
Expires: 3600.

Chapter 5

[83]

Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REFER, NOTIFY, MESSAGE, SUBSCRIBE,
INFO.
User-Agent: X-Lite release 1003l stamp 30942.
Content-Length: 0.

U 192.168.1.155:5060 -> 192.168.1.119:29040
SIP/2.0 401 Unauthorized.
Via: SIP/2.0/UDP 192.168.1.119:29040;branch=z9hG4bK-d87543-13517a5a8218ff45-1--d87543-
;rport=29040.
To: "1000"<sip:1000@192.168.1.155>;tag=329cfeaa6ded039da25ff8cbb8668bd2.41bb.
From: "1000"<sip:1000@192.168.1.155>;tag=0d10cc75.
Call-ID: e0739d571d287264NjhiZjM2N2UyMjhmNDViYTgzY2I4ODMxYTVlZTY0NDc..
CSeq: 1 REGISTER.
WWW-Authenticate: Digest realm="192.168.1.155", nonce="46263864b3abb96a423a7ccf052fa6
8d4ad5192f".
Server: OpenSER (1.2.0-notls (i386/linux)).
Content-Length: 0.

U 192.168.1.119:29040 -> 192.168.1.155:5060
REGISTER sip:192.168.1.155 SIP/2.0.
Via: SIP/2.0/UDP 192.168.1.119:29040;branch=z9hG4bK-d87543-da776d09bd6fcb65-1--d87543-
;rport.
Max-Forwards: 70.
Contact: <sip:1000@192.168.1.119:29040;rinstance=2286bddd834b3cfe>.
To: "1000"<sip:1000@192.168.1.155>.
From: "1000"<sip:1000@192.168.1.155>;tag=0d10cc75.
Call-ID: e0739d571d287264NjhiZjM2N2UyMjhmNDViYTgzY2I4ODMxYTVlZTY0NDc..
CSeq: 2 REGISTER.
Expires: 3600.
Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REFER, NOTIFY, MESSAGE, SUBSCRIBE,
INFO.
User-Agent: X-Lite release 1003l stamp 30942.
Authorization: Digest username="1000",realm="192.168.1.155",nonce="46263864b3abb96a423
a7ccf052fa68d4ad5192f",uri="sip:192.168.1.155",response="d7b33793a123a69ec12c8fc87abd4c0
3",algorithm=MD5.
Content-Length: 0.

U 192.168.1.155:5060 -> 192.168.1.119:29040
SIP/2.0 200 OK.
Via: SIP/2.0/UDP 192.168.1.119:29040;branch=z9hG4bK-d87543-da776d09bd6fcb65-1--d87543-
;rport=29040.
To: "1000"<sip:1000@192.168.1.155>;tag=329cfeaa6ded039da25ff8cbb8668bd2.c577.
From: "1000"<sip:1000@192.168.1.155>;tag=0d10cc75.

Adding Authentication with MySQL

[84]

Call-ID: e0739d571d287264NjhiZjM2N2UyMjhmNDViYTgzY2I4ODMxYTVlZTY0NDc..
CSeq: 2 REGISTER.
Contact: <sip:1000@192.168.1.119:29040;rinstance=2286bddd834b3cfe>;expires=3600.
Server: OpenSER (1.2.0-notls (i386/linux)).
Content-Length: 0.

Register Sequence Code Snippet
Let's show now how this sequence is coded in the openser.cfg script:

if (method=="REGISTER") {
 # Uncomment this if you want to use digest authentication
 if (!www_authorize("", "subscriber")) {
 www_challenge("", "0");
 exit;
 };
 save("location");
 exit;
};

In the sequence above, in the first pass the REGISTER packet is not authenticated by
the www_authorize function. Then the instruction www_challenge is invoked. It
sends the "401 Unauthorized" packet, which contains the authentication challenge,
according to the digest authentication scheme. In the second pass the UAC sends
the REGISTER packet with the correct Authorize header field, then the save
("location") function is invoked to save the AOR in the MySQL location table.

The INVITE Authentication Sequence
Opposite is the INVITE authentication sequence of an ordinary call. The proxy server
always answers the first INVITE with a reply containing a message, "407 Proxy
Authentication Required". This message has the "Authorize" header field, containing
information about the digest authentication, such as realm and nonce. Once received
by the UAC, this message is answered with a new INVITE. Now, the "Authorize"
header field contains the digest calculated using the username, password, realm, and
nonce using the MD5 algorithm. If there is a match between the digest passed in the
request and the one calculated in the server using the same parameters, the user
is authenticated.

Chapter 5

[85]

INVITE Sequence Packet Capture
We have captured an INVITE authentication sequence using ngrep. This sequence
will help you to understand the figure above. The SDP headers were striped off to
avoid a long list.

U 192.168.1.169:5060 -> 192.168.1.155:5060
INVITE sip:1000@192.168.1.155 SIP/2.0.
Via: SIP/2.0/UDP 192.168.1.169;branch=z9hG4bKf45d977e65cf40e0.
From: <sip:1001@192.168.1.155>;tag=a83bebd75be1d88e.
To: <sip:1000@192.168.1.155>.
Contact: <sip:1001@192.168.1.169>.
Supported: replaces.
Call-ID: 8acb7ed7fc07c369@192.168.1.169.
CSeq: 39392 INVITE.
User-Agent: TMS320V5000 TI50002.0.8.3.
Max-Forwards: 70.
Allow: INVITE,ACK,CANCEL,BYE,NOTIFY,REFER,OPTIONS,INFO,SUBSCRIBE.
Content-Type: application/sdp.
Content-Length: 386.
(sdp header striped off).
U 192.168.1.155:5060 -> 192.168.1.169:5060
SIP/2.0 407 Proxy Authentication Required.
Via: SIP/2.0/UDP 192.168.1.169;branch=z9hG4bKf45d977e65cf40e0.

Adding Authentication with MySQL

[86]

From: <sip:1001@192.168.1.155>;tag=a83bebd75be1d88e.
To: <sip:1000@192.168.1.155>;tag=329cfeaa6ded039da25ff8cbb8668bd2.b550.
Call-ID: 8acb7ed7fc07c369@192.168.1.169.
CSeq: 39392 INVITE.
Proxy-Authenticate: Digest realm="192.168.1.155", nonce="4626420b4b162ef84a1a1d3966704d3
80194bb78".
Server: OpenSER (1.2.0-notls (i386/linux)).
Content-Length: 0.
U 192.168.1.169:5060 -> 192.168.1.155:5060
ACK sip:1000@192.168.1.155 SIP/2.0.
Via: SIP/2.0/UDP 192.168.1.169;branch=z9hG4bKf45d977e65cf40e0.
From: <sip:1001@192.168.1.155>;tag=a83bebd75be1d88e.
To: <sip:1000@192.168.1.155>;tag=329cfeaa6ded039da25ff8cbb8668bd2.b550.
Contact: <sip:1001@192.168.1.169>.
Call-ID: 8acb7ed7fc07c369@192.168.1.169.
CSeq: 39392 ACK.
User-Agent: TMS320V5000 TI50002.0.8.3.
Max-Forwards: 70.
Allow: INVITE,ACK,CANCEL,BYE,NOTIFY,REFER,OPTIONS,INFO,SUBSCRIBE.
Content-Length: 0.
U 192.168.1.169:5060 -> 192.168.1.155:5060
INVITE sip:1000@192.168.1.155 SIP/2.0.
Via: SIP/2.0/UDP 192.168.1.169;branch=z9hG4bKcdb4add5db72d493.
From: <sip:1001@192.168.1.155>;tag=a83bebd75be1d88e.
To: <sip:1000@192.168.1.155>.
Contact: <sip:1001@192.168.1.169>.
Supported: replaces.
Proxy-Authorization: Digest username="1001", realm="192.168.1.155", algorithm=MD5,
uri="sip:1000@192.168.1.155", nonce="4626420b4b162ef84a1a1d3966704d380194bb78", respon
se="06736c6d7631858bb1cbb0c86fb939d9".
Call-ID: 8acb7ed7fc07c369@192.168.1.169.
CSeq: 39393 INVITE.
User-Agent: TMS320V5000 TI50002.0.8.3.
Max-Forwards: 70.
Allow: INVITE,ACK,CANCEL,BYE,NOTIFY,REFER,OPTIONS,INFO,SUBSCRIBE.
Content-Type: application/sdp.
Content-Length: 386.
(sdp header striped off)
INVITE Code Snippet
In the code below, the SIP proxy will challenge the user for
credentials on any request different from REGISTER. We consume the credentials after
authentication, for security reasons, to avoid sending encrypted material ahead.
 if (!proxy_authorize("","subscriber")) {
 proxy_challenge("","0");

Chapter 5

[87]

 exit;
 };
 consume_credentials();

 lookup("aliases");
 if (!uri==myself) {
 append_hf("P-hint: outbound alias\r\n");
 route(1);
 };
 # native SIP destinations are handled using
 our USRLOC DB
 if (!lookup("location")) {
 sl_send_reply("404", "Not Found");
 exit;
 };
 append_hf("P-hint: usrloc applied\r\n");
 };
 route(1);

Digest Authentication
The digest authentication is based on the RFC2617 "HTTP Basic and Digest Access
Authentication". Our objective in this chapter is to show the basics of a system with
digest authentication. It is not an answer to all possible security problems with
SIP, but it is certainly a good method to protect names and passwords traversing
the network.

Adding Authentication with MySQL

[88]

The digest scheme is a simple challenge-response mechanism. It challenges the UA
using a nonce value. A valid response includes a checksum with all the parameters.
Thus the password is never transmitted as simple text.

WWW-Authenticate Response Header
If a server receives a REGISTER or an INVITE request and a valid "Authorize"
header field is not sent, the server replies "401 unauthorized" with a header field
"WWW-Authenticate". This header contains a realm and a nonce.

The Authorization Request Header
The client is expected to try again, now passing the "Authorize" header field. It
contains the user name, realm, and nonce (passed by the server), uri, a hexadecimal
answer with 32 digits, and an algorithm method of authentication (in this case MD5).
This answer is the checksum generated by the client using the specified algorithm.

QOP—Quality of Protection
The qop parameter indicates the quality of protection that the client has applied to
the message. If present this value should be one of the alternatives that the server
supports. These alternatives are indicated in the "WWW-Authenticate" header field.
These values affect the digest computation. This directive is optional to preserve the
compatibility with a minimum implementation of RFC2809.

Chapter 5

[89]

You can configure the qop parameter on both function calls
www_challenge(realm,qop) and proxy_challenge(realm,qop). If configured to 1,
the server will ask for the qop parameter. Always use qop=1 (enabled), it will help
you to avoid "replay" attacks. However, some clients can be incompatible with qop.
A detailed description of the digest authentication can be found in RFC2617.

Installing MySQL Support
To allow persistence, in other words, keep the user credentials in a database, where
they are protected from power outages and reboots, OpenSER will need to be
configured to use a database such as MySQL. Before you proceed it is important
to verify that you have MySQL installed and the OpenSER MySQL module compiled
and installed.

In Chapter 3 we compiled OpenSER with MySQL support. Check the directory
/lib/openser/modules for the mysql.so module.

Some additional tasks have to be done before you can use OpenSER with MySQL.

Step 1: Verify the existence of the module mysql.so in the directory:

ls /lib/openser/modules/mysql.so

If the module does not exist, please compile OpenSER with MySQL support.

Step 2: Create MySQL tables using the openser_mysql.sh shell script.

This script will create the MySQL tables with the following parameters:

DBNAME="openser"
DBHOST="localhost"
DBRWUSER="openser"
DBRWPW="openserrw"
DBROUSER="openserro"
DBROPW="openserro"
DBROOTUSER="root"
cd/sbin
./openser_mysql.sh create
MySQL password for root:
Enter password:
Enter password:
creating database openser ...
Core OpenSER tables succesfully created.
Install presence related tables ?(y/n):y
creating presence tables into openser ...
Presence tables succesfully created.

Adding Authentication with MySQL

[90]

Install extra tables - imc,cpl,siptrace,domainpolicy ?(y/n):y
creating extra tables into openser ...
Extra tables succesfully created.
Install SERWEB related tables ?(y/n):n
Domain (realm) for the default user 'admin': voffice.com.br

A password will be solicited to access the database. The password is empty at this
moment. The script will ask for the password twice; press Enter in both. The script
will ask for a domain (realm); inform your domain for the admin user.

Step 3: Configure OpenSER to use MySQL.

Make the highlighted changes in the file as below.

------------------ module loading ----------------------------------

#set module path
mpath="//lib/openser/modules/"

Uncomment this if you want to use SQL database
loadmodule "mysql.so"

loadmodule "sl.so"
loadmodule "tm.so"
loadmodule "rr.so"
loadmodule "maxfwd.so"
loadmodule "usrloc.so"
loadmodule "registrar.so"
loadmodule "textops.so"
loadmodule "mi_fifo.so"

Uncomment this if you want digest authentication
mysql.so must be loaded !
loadmodule "auth.so"
loadmodule "auth_db.so"
----------------- setting module-specific parameters ---------------

-- mi_fifo params --

modparam("mi_fifo", "fifo_name", "/tmp/openser_fifo")

-- usrloc params --

#modparam("usrloc", "db_mode", 0)

Uncomment this if you want to use SQL database
for persistent storage and comment the previous line
modparam("usrloc", "db_mode", 2)

-- auth params --
Uncomment if you are using auth module
#

Chapter 5

[91]

modparam("auth_db", "calculate_ha1", yes)
#
If you set "calculate_ha1" parameter to yes (which true in this
config),
uncomment also the following parameter)
#
modparam("auth_db", "password_column", "password")

-- rr params --
add value to ;lr param to make some broken UAs happy
modparam("rr", "enable_full_lr", 1)

------------------------- request routing logic -------------------
main routing logic

route{

 # initial sanity checks -- messages with
 # max_forwards==0, or excessively long requests
 if (!mf_process_maxfwd_header("10")) {
 sl_send_reply("483","Too Many Hops");
 exit;
 };

 if (msg:len >= 2048) {
 sl_send_reply("513", "Message too big");
 exit;
 };

 # we record-route all messages -- to make sure that
 # subsequent messages will go through our proxy; that's
 # particularly good if upstream and downstream entities
 # use different transport protocol
 if (!method=="REGISTER")
 record_route();

 # subsequent messages withing a dialog should take the
 # path determined by record-routing
 if (loose_route()) {
 # mark routing logic in request
 append_hf("P-hint: rr-enforced\r\n");
 route(1);
 };

 if (!uri==myself) {
 # mark routing logic in request
 append_hf("P-hint: outbound\r\n");
 # if you have some interdomain connections via TLS
 #if(uri=~"@tls_domain1.net") {
 # t_relay("tls:domain1.net");

Adding Authentication with MySQL

[92]

 # exit;
 #} else if(uri=~"@tls_domain2.net") {
 # t_relay("tls:domain2.net");
 # exit;
 #}
 route(1);
 };

 # if the request is for other domain use UsrLoc
 # (in case, it does not work, use the following command
 # with proper names and addresses in it)
 if (uri==myself) {

 if (method=="REGISTER") {

 # Uncomment this if you want to use digest.
 if (!www_authorize("", "subscriber")) {
 www_challenge("", "0");
 exit;
 };

 save("location");
 exit;
		 };

 if (!proxy_authorize("","subscriber")) {
 proxy_challenge("","0");
 exit;
 };

 consume_credentials();
 lookup("aliases");
 if (!uri==myself) {
 append_hf("P-hint: outbound alias\r\n");
 route(1);
 };

 # native SIP destinations are handled using our USRLOC DB
 if (!lookup("location")) {
 sl_send_reply("404", "Not Found");
 exit;
 };
 append_hf("P-hint: usrloc applied\r\n");
 };

 route(1);
}

route[1] {
 # send it out now; use stateful forwarding as it works

Chapter 5

[93]

reliably
 # even for UDP2TCP
 if (!t_relay()) {
 sl_reply_error();
 };
 exit;
}

openser.cfg File Analysis
Now the configuration is ready to authenticate REGISTER transactions. Now, we can
save the AOR in the location database implementing persistence. This allows us to
restart the server without loosing the AOR records and affecting the UACs.

Another important fact is that OpenSER is now authenticating REGISTER requests.
Later we will implement authentication also for INVITE requests. Now it is required
that UACs authenticate to register.

loadmodule "mysql.so"
loadmodule "auth.so"
loadmodule "auth_db.so"

The MySQL support is added easily by including mysql.so in the list of loaded
modules. MySQL should be loaded before the other modules. Some modules, such as
uri_db, depend on MySQL to load.

The authentication capability is provided by the auth.so and auth_db.so modules.
These modules are required to enable the authentication functionality. The module
uri_db exposes some authentication.

modparam("auth_db", "calculate_ha1", 1)
modparam("usrloc", "db_mode", 2)

The parameter calculate_ha1 tells the auth_db module to use plaintext passwords.
We will use plaintext password for compatibility with SerMyAdmin.

The db_mode parameter tells the usrloc module to store and retrieve AOR records in
the MySQL database.

 if (method=="REGISTER") {

 # Uncomment this if you want to use digest auth.
 if (!www_authorize("", "subscriber")) {
 www_challenge("", "0");
 exit;
 };

 save("location");

Adding Authentication with MySQL

[94]

 exit;

 } else if (method=="INVITE") {
 if (!proxy_authorize("","subscriber")) {
 proxy_challenge("","0");
 exit;
 };

 consume_credentials();
 };

In the code snippet shown above, we will check the authentication for both methods
INVITE and REGISTER.

If the method is REGISTER and the credentials are correct www_authorize returns
true. After the authentication the system saves the location data for this UAC. The
first parameter specifies the realm where the user will be authenticated. Realm
usually is the domain name or host name. The second parameter tells OpenSER
which MySQL table to look for.

www_challenge("","0");

If the packet does not have an Authorize header field we will send to the UAC the
message "401 unauthorized". This tells the UAC to retransmit the request with the
included digest credentials. The command www_challenge receives two parameters.
The first one is the realm the UAC should use to compute the digest. The second
one affects the inclusion of the qop parameter in the challenge. Using 1 will include
the qop in the digest. Some phones may not support qop. You can try 0 in these
circumstances.

consume_credentials();

We don't want to take risks sending the digest credentials to servers ahead. Therefore
we use the function consume_credentials() to remove the Authorize header field
from the request before relaying.

 if (!proxy_authorize("","subscriber")) {

We use the proxy_authorize() function to check for the authentication headers.
If we didn't check the credentials we could be considered an open relay. The
arguments are similar to those for www_authorize.

The Openserctl Shell Script
The utility openserctl is a shell script installed at /usr/sbin. It is used to manage
OpenSER from the command line. It can be used to:

Chapter 5

[95]

Start, stop, and restart OpenSER
Show, grant, and revoke ACLs
Add, remove, and list aliases
Add, remove, and configure an AVP
Manage LCR (low cost routes)
Manage RPID
Add, remove, and list subscribers
Add, remove, and show the usrloc table "in-ram"
Monitor OpenSER

We will learn several of its options in the next sections. Below is the output of the
openserctl help command:

/etc/openser# openserctl help
database engine 'MYSQL' loaded
Control engine 'FIFO' loaded
/usr/sbin/openserctl 1.2 - $Revision: 1.3 $
Existing commands:

 -- command 'start|stop|restart'

 restart restart OpenSER
 start start OpenSER
 stop stop OpenSER

 -- command 'acl' - manage access control lists (acl)

 acl show [<username>] show user membership
 acl grant <username> <group> grant user membership (*)
 acl revoke <username> [<group>] grant user membership(s) (*)

 -- command 'alias_db' - manage database aliases

 alias_db show <alias> show alias details
 alias_db list <sip-id> list aliases for uri
 alias_db add <alias> <sip-id> add an alias (*)
 alias_db rm <alias> remove an alias (*)
 alias_db help help message
 - <alias> must be an AoR (username@domain)"
 - <sip-id> must be an AoR (username@domain)"

 -- command 'avp' - manage AVPs

 avp list [-T table] [-u <sip-id|uuid>]
 [-a attribute] [-v value] [-t type] ... list AVPs
 avp add [-T table] <sip-id|uuid>
 <attribute> <type> <value> add AVP (*)

•

•

•

•

•

•

•

•

•

Adding Authentication with MySQL

[96]

 avp rm [-T table] [-u <sip-id|uuid>]
 [-a attribute] [-v value] [-t type] ... remove AVP (*)
 avp help help message
 - -T - table name
 - -u - SIP id or unique id
 - -a - AVP name
 - -v - AVP value
 - -t - AVP name and type (0 (str:str), 1 (str:int),
 2 (int:str), 3 (int:int))
 - <sip-id> must be an AoR (username@domain)
 - <uuid> must be a string but not AoR

 -- command 'db' - database operations

 db exec <query> execute SQL query
 db show <table> display table content

 -- command 'lcr' - manage least cost routes (lcr)

 * lcr *
 * IP addresses must be entered in dotted quad format e.g. 1.2.3.4 *
 * <uri_scheme> and <transport> must be entered in integer or text,*
 * e.g. transport '2' is identical to transport 'tcp'. *
 * scheme: 1=sip, 2=sips; transport: 1=udp, 2=tcp, 3=tls *
 * Examples: lcr addgw_grp usa 1 *
 * lcr addgw level3 1.2.3.4 5080 sip tcp 1 *
 * lcr addroute +1 % 1 1 *
 lcr show ..
 show routes, gateways and groups
 lcr reload ..
 reload lcr gateways
 lcr addgw_grp <grp_name> ..
 add gateway group, autocreate grp_id
 lcr addgw_grp <grp_name> <grp_id> ...
 add gateway group with grp_id
 lcr rmgw_grp <grp_id> ..
 delete the gw_grp
 lcr addgw <gw_name> <ip> <port> <scheme> <transport> <grp_id>
 add a gateway
 lcr addgw <gw_name> <ip> <port> <scheme> <transport> <grp_id> <prefix>
 add a gateway with prefix
 lcr addgw <gw_name> <ip> <port> <scheme> <transport> <grp_id> <prefix> <strip>
 add a gateway with prefix and strip
 lcr rmgw <gw_name> ...
 delete a gateway
 lcr addroute <prefix> <from> <grp_id> <prio>
 add a route

Chapter 5

[97]

 lcr rmroute <prefix> <from> <grp_id> <prio>
 delete a route

 -- command 'rpid' - manage Remote-Party-ID (RPID)

 rpid add <username> <rpid> add rpid for a user (*)
 rpid rm <username> set rpid to NULL for a user (*)
 rpid show <username> show rpid of a user

 -- command 'speeddial' - manage speed dials (short numbers)

 speeddial show <speeddial-id> show speeddial details
 speeddial list <sip-id> list speeddial for uri
 speeddial add <sip-id> <sd-id> <new-uri> [<desc>] ...
 add a speedial (*)
 speeddial rm <sip-id> <sd-id> remove a speeddial (*)
 speeddial help help message
 - <speeddial-id>, <sd-id> must be an AoR (username@domain)
 - <sip-id> must be an AoR (username@domain)
 - <new-uri> must be a SIP AoR (sip:username@domain)
 - <desc> a description for speeddial
 -- command 'add|mail|passwd|rm' - manage subscribers

 add <username> <password> <email> .. add a new subscriber (*)
 passwd <username> <passwd> change user's password (*)
 rm <username> delete a user (*)
 mail <username> send an email to a user

 -- command 'cisco_restart' - restart CISCO phone (NOTIFY)

 cisco_restart <uri> restart phone configured for <uri>

 -- command 'online' - dump online users from memory

 online display online users

 -- command 'monitor' - show internal status

 monitor show server's internal status

 -- command 'ping' - ping a SIP URI (OPTIONS)

 ping <uri> ping <uri> with SIP OPTIONS

 -- command 'ul|alias' - manage user location or aliases

 ul show [<username>]................ show in-RAM online users
 ul rm <username> [<contact URI>].... delete user's UsrLoc entries
 ul add <username> <uri> introduce a permanent UrLoc entry
 ul add <username> <uri> <expires> .. introduce a temporary UrLoc entry

 -- command 'fifo'

 fifo send raw FIFO command

Adding Authentication with MySQL

[98]

Openserctl Resource File
In version1.1 a resource file called openserctlrc was introduced. This script is
found at /etc/openser. It is parsed by the openserctl utility to configure the
database authentication and some communication parameters. Usually it uses the
FIFO mechanism to send commands to the OpenSER daemon.

For security reasons is important to change the default user and password
used to database access.

Openserctlrc File
To show the file, issue a command:

cat /etc/openser/openserctlrc
$Id: openserctlrc,v 1.2 2006/07/05 19:37:20 miconda Exp $
#
openser control tool resource file
#
here you can set variables used in the openserctl

your SIP domain
SIP_DOMAIN=voffice.com.br

database type: MYSQL or PGSQL, by defaulte none is loaded
DBENGINE=MYSQL

database host
DBHOST=localhost

database name
DBNAME=openser

database read/write user
DBRWUSER=openser

database read only user
DBROUSER=openserro

password for database read only user
DBROPW=openserro

database super user
DBROOTUSER="root"

type of aliases used: DB - database aliases; UL - usrloc aliases
- default: none
ALIASES_TYPE="DB"

control engine: FIFO or UNIXSOCK

Chapter 5

[99]

- default FIFO
CTLENGINE="FIFO"

path to FIFO file
OSER_FIFO="FIFO"

check ACL names; default on (1); off (0)
VERIFY_ACL=1

ACL names - if VERIFY_ACL is set, only the ACL names from below list
are accepted
ACL_GROUPS="local ld int voicemail free-pstn"

verbose - debug purposes - default '0'
VERBOSE=1
do (1) or don't (0) store plaintext passwords
in the subscriber table - default '1'
STORE_PLAINTEXT_PW=0

Using OpenSER with Authentication
Now, let's implement the authentication in a practical way.

Step 1: Make the changes described in this chapter to the openser.cfg file.

Step 2: Restart OpenSER with:

/etc/init.d/openser restart

Step 3: Configure openserctlrc with the default parameters used with openserctl.

$Id: openserctlrc 1827 2007-03-12 15:22:53Z bogdan_iancu $
#
openser control tool resource file

#
here you can set variables used in the openserctl

your SIP domain
SIP_DOMAIN=voffice.com.br

database type: MYSQL or PGSQL, by defaulte none is loaded
DBENGINE=MYSQL

database host
DBHOST=localhost

database name
DBNAME=openser

database read/write user
DBRWUSER=openser

Adding Authentication with MySQL

[100]

database read only user
DBROUSER=openserro

password for database read only user
DBROPW=openserro

database super user
DBROOTUSER="root"

type of aliases used: DB - database aliases; UL - usrloc aliases
- default: none
ALIASES_TYPE="DB"

control engine: FIFO or UNIXSOCK
- default FIFO
CTLENGINE="FIFO"

path to FIFO file
OSER_FIFO="/tmp/openser_fifo"

check ACL names; default on (1); off (0)
VERIFY_ACL=1

ACL names - if VERIFY_ACL is set, only the ACL names from below
list
are accepted
ACL_GROUPS="local ld int voicemail free-pstn"

presence of serweb tables - default "no"
HAS_SERWEB="yes"

verbose - debug purposes - default '0'
VERBOSE=1

do (1) or don't (0) store plaintext passwords
in the subscriber table - default '1'
STORE_PLAINTEXT_PW=1

Step 4: Configure two user accounts using the openserctl utility.

/sbin/openserctl add 1000 password 1000@voffice.com.br
/sbin/openserctl add 1001 password 1001@voffice.com.br

If you have a problem with "Duplicate Keys", please check that you
haven't installed the SerWEB tables. If you had done so, Just change the
line HAS_SERWEB to "yes".

When asked for the password use openserrw.

Chapter 5

[101]

You can remove users using openserctl rm and change a password using
openserctl passwd.

Step 5: Use the ngrep utility to see the SIP messages:

#ngrep -p -q -W byline port 5060 >register.pkt

Step 6: Register both phones now using name and password:

Step 7: Verify that the phones are registered using:

#openserctl ul show

Step 8: You can verify which users are online using:

#openserctl online

Step 9: You can ping a client using:

#openserctl ping 1000

Step 10: Verify the authentication messages using the ngrep utilty.

Step 11: Make a call from one phone to the other.

Step 12: Verify the authentication in the register.pkt file using:

#pg register.pkt

Enhancing the Script

Adding Authentication with MySQL

[102]

The calls handled by the SIP proxy could be classified as:

Intra-domain
Outbound Inter-domain
Inbound Inter-domain
Outbound-to-Outbound

Let's describe some problems with our current script:

Problem #1: At present we are not checking the identity for outbound calls coming
from other domains. This makes our server an open relay. Thus any caller can use
our server to hide their identity.

Problem #2: Our script does not accept a call coming from another domain.

Problem #3: A user can forge a FROM header field of an INVITE request using
credentials from another user.

Problem #4: A user can forge a TO header field of a REGISTER request using
credentials from another user.

Problem #5: The script is not prepared to manage multiple domains.

Managing Multiple Domains
Until now, we have verified the requests using the instruction uri==myself.
However, this instruction verifies only local names and addresses. If we need to
manage multiple domains we will have to use the domain module and its respective
functions is_from_local() and is_uri_host_local().

As I said before the domain module exports two functions that will be used in our
script. The first one is is_from_local(), which verifies if the FROM header field
contains one of the domains managed by our proxy. The second function, is_uri_
host_local(), replaces the uri==myself instruction. The advantage of the domain
exported functions is that they check the domain on a MySQL table (DOMAIN).
Then you can handle multiple domains in your configuration.

This function requires that all served domains be inserted in the database.
A fairly common mistake for users of this material is to forget to insert the
domains in the MySQL database before starting to register the phones!

•
•
•

•

Chapter 5

[103]

Alternative Routes
To simplify our script we will create several alternative routes. We have seen that
the script can become very complex and confusing. To avoid this, we have created
alternate routes working in a way similar of subroutines. Using alternative routes,
allows us to separate certain pieces of code to enhance the readability.

Register Requests (route[2])
The register-request route is responsible for handling all REGISTER requests. The
code authenticates the user and save the location of the UAC.

route[2] {
 #
 # -- Register request handler --
 #
 if (is_uri_host_local()) {
 if (!www_authorize("", "subscriber")) {
 www_challenge("", "1");
 exit;
 };
 if (!check_to()) {
 sl_send_reply("401", "Unauthorized");
 exit;
 };
 save("location");
 exit;
 } else if {
 sl_send_reply("401", "Unauthorized");
 };
}

Non-Register Requests (route[3])
The non-register request route handles all other requests. Again, the request needs to
be authenticated. We have decided to separate requests into:

Inbound-to-Inbound (route[10])
Inbound-to-Outbound (route[11])
Outbound-to-Inbound (route[12])
Outbound-to-Outbound (route[13])

•

•

•

•

Adding Authentication with MySQL

[104]

Usually, you will permit Inbound-to-Inbound requests with authentication.
It is the normal situation. Inbound-to-Outbound and Outbound-to-Inbound are
used to handle inter-domain requests. Most VoIP providers do not allow
inter-domain communications, because it can potentially reduce the income.
Outbound-to-Outbound calls are rarely permitted. In most cases, they are
considered a security hole.

route[3] {
 #
 # -- non-register requests handler --
 #

 # Verify the source (FROM)
 if (is_from_local()){
 # From an internal domain -> check the credentials and the FROM
 if (!proxy_authorize("","subscriber")) {
 proxy_challenge("","1");
 exit;
 } else if (!check_from()) {
 sl_send_reply("403", "Forbidden, use From=ID");
 exit;
 };
 consume_credentials();
 # Verify aliases
 lookup("aliases");

 # Verify the destination (URI)
 if (is_uri_host_local()) {
 # -- Inbound to Inbound
 route(10);
 } else {
 # -- Inbound to outbound
 route(11);
 };

 } else {

 #Verify aliases, if found replace R-URI.
 lookup("aliases");

 # Verify the destination (URI)
 if (is_uri_host_local()) {
 #-- Outbound to inbound
 route(12);
 } else {
 # -- Outbound to outbound
 route(13);
 };
 };
}

Chapter 5

[105]

Managing Calls Coming from Our Domain
Our script openser.cfg now differentiates calls by source and destination. It
determines the destination using the function if(is_uri_host_local()) and the
source using if(is_from_local()).

For inbound originated calls, we will first check the identity and remove the
credentials to avoid sending them ahead. We will resolve any alias defined before
checking the destination and forwarding the request.

If the call destination is one of our managed domains (checked using
is_uri_host_local()) we will send it to route(10) else if it is an external domain
we will send it to route(11).

Inbound-to-Inbound—route[10]
Inbound destinations will be handled by the user location database.

route[10] {
 #from an internal domain -> inbound
 #Native SIP destinations are handled using the location table
 append_hf("P-hint: inbound->inbound \r\n");
 if (!lookup("location")) {
 sl_send_reply("404", "Not Found");
 exit;
 };
 route(1);
}

Inbound-to-Outbound—route[11]
We will route calls to external destinations using a DNS search.

route[11] {
 # from an internal domain -> outbound
 # Simply route the call outbound using DNS search
 append_hf("P-hint: inbound->outbound \r\n");
 route(1);
}

Outbound-to-Inbound�—route[12]
We will allow call from external domains to our phones. This configuration allows
dialing spam to our phones, but at this time this is not a common practice. I believe
the benefits are bigger than the risks. In the future nobody knows. It seems to me
logical to be open to receive calls in the same way we are open to receive calls on our
phones and we are open to receive emails.

Adding Authentication with MySQL

[106]

route[12] {
 # From an external domain -> inbound
 # Verify aliases, if found replace R-URI.
 lookup("aliases");
 if (!lookup("location")) {
 sl_send_reply("404", "Not Found");
 exit;
 };
 route(1);
}

Outbound-to-Outbound—route[13]
We don't want to relay external messages as an open-relay. Someone else could use
our proxy to route calls anonymously if this configuration were not in place.

route[13] {
 #From an external domain outbound
 #we are not accepting these calls
 sl_send_reply("403", "Forbidden");
 exit;
}

The Functions check_to() and
check_from()
When operating a SIP proxy, you should guarantee that a valid account won't be
used by non-authenticated users. The check_to() and check_from() functions are
used to map the SIP users with the authentication user. The SIP user is in the FROM
and TO header fields and the auth user is only used for authentication (Authorize
header field) and it has its own password. In the current example, the function
checks that a SIP user and the auth user are the same. This is to prevent a user form
using the authentication of another user. These functions are enabled by the
URI_DB module.

Using Aliases
In some cases you want to allow a user to have several addresses, such as the phone
number associated to a main address. You can use Aliases for this purpose.

Chapter 5

[107]

To add an Alias, use:

#openserctl alias add flavio@asteriskguide.com
sip:1000@asteriskguide.com
database engine 'MYSQL' loaded
Control engine 'FIFO' loaded
MySql password for user 'openser@localhost':

lookup("aliases");

The function lookup("aliases") checks the alias table in the database and if a
register is found it translates it to the canonical address (the one in the subscribers
table). This feature is also used to redirect DIDs to the final user. There is also the
Alias_db module. It searches the alias directly from the database instead of memory.
Even, having a small performance penalty, it can simplify the provisioning of alias
directly in the database.

Handling CANCEL requests and
retransmissions
Cancel requests according to the RFC3261, needs to be routed in the same way
as the INVITE requests. The script below checks if the CANCEL request matches
an existing transaction and takes care of all the necessary routing. Sometimes, we
have retransmissions associated with an existing transaction. If this is the case, the
function t_check_trans() will handle it and exit the script.

#CANCEL processing
if (is_method("CANCEL"))
{
if (t_check_trans())
 t_relay();
 exit;
}

t_check_trans();

Adding Authentication with MySQL

[108]

Full Script with All the Resources Above
------------------ module loading ----------------------------------

#set module path
mpath="//lib/openser/modules/"

Uncomment this if you want to use SQL database
loadmodule "mysql.so"

loadmodule "sl.so"
loadmodule "tm.so"
loadmodule "rr.so"
loadmodule "maxfwd.so"
loadmodule "usrloc.so"
loadmodule "registrar.so"
loadmodule "textops.so"
loadmodule "mi_fifo.so"
loadmodule "uri.so"
loadmodule "uri_db.so"
loadmodule "domain.so"

Uncomment this if you want digest authentication
mysql.so must be loaded !
loadmodule "auth.so"
loadmodule "auth_db.so"
----------------- setting module-specific parameters ---------------

-- mi_fifo params --

modparam("mi_fifo", "fifo_name", "/tmp/openser_fifo")

-- usrloc params --

#modparam("usrloc", "db_mode", 0)

Uncomment this if you want to use SQL database
for persistent storage and comment the previous line
modparam("usrloc", "db_mode", 2)

-- auth params --
Uncomment if you are using auth module
#
modparam("auth_db", "calculate_ha1", 0)
#
If you set "calculate_ha1" parameter to yes,
uncomment also the following parameter)
#
#modparam("auth_db", "password_column", "password")

-- rr params --
add value to ;lr param to make some broken UAs happy

Chapter 5

[109]

modparam("rr", "enable_full_lr", 1)

------------------------- request routing logic -------------------
main routing logic

route{
 # initial sanity checks -- messages with
 # max_forwards==0, or excessively long requests
 if (!mf_process_maxfwd_header("10")) {
 sl_send_reply("483","Too Many Hops");
 exit;
 };

 if (msg:len >= 2048) {
 sl_send_reply("513", "Message too big");
 exit;
 };

 # we record-route all messages -- to make sure that
 # subsequent messages will go through our proxy; that's
 # particularly good if upstream and downstream entities
 # use different transport protocol
 if (!method=="REGISTER")
 record_route();

 # subsequent messages withing a dialog should take the
 # path determined by record-routing
 if (loose_route()) {
 # mark routing logic in request
 append_hf("P-hint: rr-enforced\r\n");
 route(1);
 };

 #CANCEL processing
 if (is_method("CANCEL")) {
 if (t_check_trans()) t_relay();
 exit;
 }
 if (method=="REGISTER") {
 route(2);
 } else {
 route(3);
 };
}

route[1] {
 # send it out now; use stateful forwarding as it works reliably
 # even for UDP2TCP
 if (!t_relay()) {

Adding Authentication with MySQL

[110]

 sl_reply_error();
 };
 exit;
}
route[2] {
 #
 # -- Register request handler --
 #
 if (is_uri_host_local()) {
 if (!www_authorize("", "subscriber")) {
 www_challenge("", "1");
 exit;
 };

 if (!check_to()) {
 sl_send_reply("40=3", "Forbidden");
 exit;
 };

 save("location");
 exit;
 } else if {
 sl_send_reply("403", "Forbidden");
 };
}

route[3] {
 #
 # -- INVITE request handler --
 #
 if (is_from_local()){
 # From an internal domain -> check the credentials
 and the FROM
 if (!proxy_authorize("","subscriber")) {
 proxy_challenge("","1");
 exit;
 } else if (!check_from()) {
 sl_send_reply("403", "Forbidden, use From=ID");
 exit;
 };

 consume_credentials();

 # Verify aliases
 lookup("aliases");

 if (is_uri_host_local()) {
 # -- Inbound to Inbound

Chapter 5

[111]

 route(10);
 } else {
 # -- Inbound to outbound
 route(11);
 };
 } else {
 # From an external domain -> do not check credentials
 #Verify aliases, if found replace R-URI.
 lookup("aliases");
 if (is_uri_host_local()) {
 #-- Outbound to inbound
 route(12);
 } else {
 # -- Outbound to outbound
 route(13);
 };
 };
}

route[10] {
 #from an internal domain -> inbound
 #Native SIP destinations are handled using the location table
 append_hf("P-hint: inbound->inbound \r\n");
 if (!lookup("location")) {
 sl_send_reply("404", "Not Found");
 exit;
 };
 route(1);
}

route[11] {
 # from an internal domain -> outbound
 # Simply route the call outbound using DNS search
 append_hf("P-hint: inbound->outbound \r\n");
 route(1);
}

route[12] {
 # From an external domain -> inbound
 # Verify aliases, if found replace R-URI.
 lookup("aliases");
 if (!lookup("location")) {
 sl_send_reply("404", "Not Found");
 exit;
 };
 route(1);

Adding Authentication with MySQL

[112]

}

route[13] {
 #From an external domain outbound
 #we are not accepting these calls
 append_hf("P-hint: outbound->inbound \r\n");
 sl_send_reply("403", "Forbidden");
 exit;
}

Lab—Enhancing the Security
Step 1: Try to register your phone with the new configuration. You will probably
note an error on your phone registration.

Step 2: The configuration above now uses the module domain.so. Now, to
authenticate, the domain has to be inside the domain table in the MySQL database.

To add a domain, use the openserctl utility.

openserctl domain add your-ip-address
openserctl domain add your-domain

Repeat the process for every domain.

Step 3: Try again to register the phone. Now probably the register process will
work fine.

Lab—Using Aliases
Step1: Add an alias to the subscriber 1000.

#openserctl alias add john@youripordomain sip:1000@youripordomain
database engine 'MYSQL' loaded
Control engine 'FIFO' loaded
MySql password for user 'openser@localhost':

Use openserrw as the password.

Step 2: From the softphone registered as "1001" dial John.

The call was completed?, Why?

Chapter 5

[113]

Summary
In this chapter you have learned how to integrate MySQL with OpenSER. Now
our script is authenticating users, checking the TO and FROM header fields, and
handling accordingly inbound and outbound calls. It's important to remember that
domains now have to be inserted in the database, because of the multiple domain
support. If you change your domain or IP addresses, please remember to update
your database.

Building the User Portal
with SerMyAdmin

In the last chapter we implemented authentication using a MySQL database. Now
we will need a tool to help users and administrators. Obviously, this tool has to be
easier than openserctl. It is very hard to manage thousands of users manually, so a
user provisioning tool becomes very important in our process. In this chapter will
well look at the SerMyAdmin tool, created specifically to help building user and
administrator portals.

By the end of this chapter you will be able to:

Identify why you need a user portal for administration
Install SerMyAdmin and its dependencies
Configure resources such as administrator and user access
Add and remove domains
Customize the portal with the colors and logos of your company

SerMyAdmin
Originally, this material was written for SerWeb. SerWeb was originally developed
for the SER project. Unfortunately, SerWeb became incompatible with newer
versions of OpenSER. Another important aspect of SerWeb to be considered is its
vulnerabilities. There are very few options for web interfaces to OpenSER. One of the
tools we have found is OpenSER administrator. This tool is beeing developed
using Ruby on Rails. While it seems to be a very good tool to administer an
OpenSER server, it does not permit to provisioning users in the same way that
SerWeb did and it lacks multi-domain support. OpenSER administrator can be found
at http://sourceforge.net/projects/openseradmin.

•

•

•

•

•

Building the User Portal with SerMyAdmin

[116]

Since a tool to build an OpenSER portal was not available , we decided to
build our own tool named SerMyAdmin using Java. After a slow start, it is
now ready and we are using it to build this book. It is licensed according to
GPLv2 and developed in Grails (Groovy on rails). It can be downloaded at
http://sourceforge.net/projects/sermyadmin.

What you are seeing here is the standalone tool. In our roadmap, we intend to
integrate SerMyAdmin into the Liferay portal. Using a content management system
such as Liferay (www.liferay.com) will make your task of building a portal much
easier than it is today.

The SerMyAdmin project can be found at sermyadmin.sourceforge.net. The idea
is to facilitate the administration of the OpenSER database. SerMyAdmin is licensed
under the GPLv2.

Lab—Installing SerMyAdmin
SerMyAdmin uses the Grails framework, so it needs an application server. You can
choose from many application servers, such as IBM WebSphere, JBoss, Jetty, Tomcat,
and so on. In this book we will use Apache Tomcat, because it's free and easy to
install. Because we use some Java 1.5 features, we'll need Sun's Java JDK, not the free
alternative GCJ.

Step 1: Create an administrator for SerMyAdmin:

mysql –u root
use openser
INSERT INTO 'subscriber' ('id' , 'username' , 'domain' , 'password'
, 'first_name' , 'last_name' , 'email_address' , 'datetime_created' ,
'ha1' , 'ha1b' , 'timezone' , 'rpid' , 'version' , 'password_hash' ,
'auth_username' , 'class' , 'domain_id' , 'role_id')
VALUES (
NULL , 'admin', 'openser.org', 'senha', 'Admin', 'Admin', 'admin@
openser.org', '0000-00-00 00:00:00', '1', '1', '1', '1', '1', NULL ,
'admin@openser.org', NULL , '1', '3'
);

Chapter 6

[117]

Step 2: The next step we will take is to update our source's list to use the contrib
repository and non-free packages. Our /etc/apt/sources.list, should look
like below:

/etc/apt/souces.list
deb http://ftp.br.debian.org/debian/ etch main contrib non-free
deb-src http://ftp.br.debian.org/debian/ etch main contrib non-free

deb http://security.debian.org/ etch/updates main contrib non-free
deb-src http://security.debian.org/ etch/updates main contrib non-free
/etc/apt/sources.list

Notice that we have added only the keywords contrib and non-free after our
repository definitions.

Step 3: Update the package listing using the following command:

openser:~# apt-get update

Step 4: Install Sun's Java 1.5, running the command below:

openser:~# apt-get install sun-java5-jdk

Step 5: Make sure you are using Sun's Java. Please, run the command below to tell
Debian that you want to use Sun's Java as your default Java implementation.

openser:~# update-java-alternatives -s java-1.5.0-sun

Step 6: If everything has gone well so far, you should run the following command
and get a similar output.

openser:~# java -version

java version "1.5.0_14"

Java(TM) 2 Runtime Environment, Standard Edition (build 1.5.0_14-b03)

Java HotSpot(TM) Client VM (build 1.5.0_14-b03, mixed mode, sharing)

Step 7: Install Tomcat. You can obtain Tomcat at:

http://tomcat.apache.org/download-60.cgi.

To install Tomcat, just run the commands below:

openser:/usr/local/etc/openser# cd /usr/local
openser:/usr/local# wget http://mirrors.uol.com.br/pub/apache/tomcat/
tomcat-6/v6.0.16/bin/apache-tomcat-6.0.16.tar.gz
openser:/usr/local# tar zxvf apache-tomcat-6.0.16.tar.gz
openser:/usr/local# ln -s apache-tomcat-6.0.16 tomcat6

Building the User Portal with SerMyAdmin

[118]

Step 8: To start Tomcat on your server initialization, please copy the following script
to /etc/init.d/tomcat6.

#! /bin/bash –e
BEGIN INIT INFO
Provides: Apache’s Tomcat 6.0
Required-Start: $local_fs $remote_fs $network
Required-Stop: $local_fs $remote_fs $network
Default-Start: 2 3 4 5
Default-Stop: S 0 1 6
Short-Description: Tomcat 6.0 Servlet engine
Description: Apache’s Tomcat Servlet Engine
END INIT INFO
#
Author: Guilherme Loch Góes <glwgoes@gmail.com>
#
set -e

PATH=/bin:/usr/bin:/sbin:/usr/sbin:
CATALINA_HOME=/usr/local/tomcat6
CATALINA_BIN=$CATALINA_HOME/bin

test -x $DAEMON || exit 0

. /lib/lsb/init-functions

case "$1" in
 start)
 echo "Starting Tomcat 6" "Tomcat6"
 $CATALINA_BIN/startup.sh
 log_end_msg $?
 ;;
 stop)
 echo "Stopping Tomcat6" "Tomcat6"
 $CATALINA_BIN/shutdown.sh
 log_end_msg $?
 ;;
 force-reload|restart)
 $0 stop
 $0 start
 ;;
 *)
 echo "Usage: /etc/init.d/tomcat6 {start|stop|restart}"
 exit 1
 ;;
esac

exit 0

Chapter 6

[119]

Step 9: Instruct Debian to run your script on startup; we do this with the
command below.

openser: chmod 755 /etc/init.d/tomcat6

openser:/etc/init.d# update-rc.d tomcat6 defaults 99

Step 10: To make sure everything is running correctly, reboot the server and try to
open in your browser the URL http://localhost:8080; if everything is OK you'll
be greeted with Tomcat's start page.

Step 11: Install the MySQL driver for Tomcat, so that SerMyAdmin can access
your database. This driver can be found at http://dev.mysql.com/downloads/
connector/j/5.1.html. You should download the driver and unpack it, then copy
the connector to Tomcat's shared library directory, as follows.

openser:/usr/src# tar zxf mysql-connector-java-5.1.5.tar.gz

openser:/usr/src# cp mysql-connector-java-5.1.5/mysql-connector-java-
5.1.5-bin.jar /usr/local/tomcat6/lib

Step 12: Declare the data source for SerMyAdmin to connect to OpenSER's database.
You can do this in an XML file found at /usr/local/tomcat6/conf/context.xml.
The file should look as below:

<?xml version="1.0" encoding="UTF-8"?>
<Context path="/serMyAdmin">
 <Resource auth="Container" driverClassName="com.mysql.jdbc.Driver"
maxActive="20" maxIdle="10" maxWait="-1" name="jdbc/openser_MySQL"
type="javax.sql.DataSource" url="jdbc:mysql://localhost:3306/openser"
username="sermyadmin" password="secret"/>
</Context>

In the file above, please change the highlighted parameters according to your
scenario. SerMyAdmin can be installed in a different server than the one that holds
the database. Do this for better scalability when possible. The default MySQL
installation on Debian only accepts requests from localhost, so you should edit the
file /etc/mysql/my.cnf, for MySQL to accept requests from external hosts.

Step 13: Create a user to be referenced in the file context.xml. This user will have
the required access to the database. Please, run the commands below:

openser:/var/lib/tomcat5.5/conf# mysql -u root –p

Enter password:

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 14

Building the User Portal with SerMyAdmin

[120]

Server version: 5.0.32-Debian_7etch5-log Debian etch distribution

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> grant all privileges on openser.* to sermyadmin@'%' identified
by 'secret';

Query OK, 0 rows affected (0.00 sec)

Step 14: We're almost there. The next step is to deploy the SerMyAdmin WAR file.
Please, download and copy the file serMyAdmin.war to Tomcat's webapps directory.
Restart it, to activate the changes.

openser:/usr/src# cp serMyAdmin-0.4.war /usr/local/tomcat6/webapps/
serMyAdmin.war

openser:/usr/src# invoke-rc.d tomcat6 restart

Don't worry about database modifications; SerMyAdmin will automatically handle
that for you.

Step 15: Configure Debian's MTA (Message Transfer Agent) to allow SerMyAdmin
to send a confirmation email to new users. Run the command below to configure
Exim4 (default MTA for Debian). Ask your company's email administrator.

openser:/# apt-get install exim4

openser:/# dpkg-reconfigure exim4-config

You will be greeted with a dialog-based configuration menu; on this menu it's import
to pay attention to two options: General type of mail configuration, which should be
set to Internet Site so that we can send and receive mails directly using SMTP, and
Domains to relay mail for, which should be set to the domain from which you want
the emails from SerMyAdmin to appear to come.

Step 16: Customize the file /usr/local/apache-tomcat-6.0.16/webapps/
serMyAdmin-0.3/WEB-INF/spring/resource.xml, which contains the parameters
that specify which email server is used to send mails and from whom these emails
should appear to come from. The following is an example of this file:

Chapter 6

[121]

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
http://www.springframework.org/schema/beans http://www.
springframework.org/schema/beans/spring-beans-2.0.xsd">

 <bean id="mailSender" class="org.springframework.mail.javamail.
JavaMailSenderImpl">
 <property name="host"><value>localhost</value></property>
 </bean>

 <!-- You can set default email bean properties here, eg: from/to/
subject -->
 <bean id="mailMessage" class="org.springframework.mail.
SimpleMailMessage">
 <property name="from"><value>admin@sermyadmin.org</value></
property>
 </bean>

</beans>

The first parameter to change is the server that we will use to send emails. The
second is the parameter specifying from whom those emails will appear to come.

Restart Tomcat again and we're ready to go. When you point your browser to
http://<server address>:8080/serMyAdmin you should be greeted with the login
page, the same as we have shown at the start on this chapter.

Basic Tasks
You can now use SerMyAdmin for a bunch of tasks. In this chapter we will show you
how to create and administer new users and groups. In the next chapters we
will use SerMyAdmin for other tasks such as managing the trust table and the
LCR module.

Building the User Portal with SerMyAdmin

[122]

Registering a New User
To register a new user, in the login screen simply click on the Register Button.

Fill up the fields, Username, Password, Domain, Email, First Name, Last Name,
Caller Id, and the confirmation code. Press the Create button at the end of the screen.
The user will be added to the database. Both the system administrator and the user
will receive an email about the registration. Before the user can make any calls, the
administrator will have to approve the user.

Approving a New User
Follow this step-by-step procedure to approve a new user:

Step 1: Log in with the admin@localhost account, password openserrw created
during the OpenSER installation. The installation process has created a new attribute
named Role for every user. The purpose of this column is to differentiate normal
users, domain administrators, and global administrators. The admin user was
automatically set to Global Administrator. This new field will help us to provide
multi-domain support.

Chapter 6

[123]

Step2: Select the menu item Registered Users.

In the screen above, select the users you want to add and check the box Approve.
Press the button Approve to add the user; the user will be removed from the
register_user table and moved to the subscriber table, and then, he will be able to
register to OpenSER and make calls.

Building the User Portal with SerMyAdmin

[124]

Step 3: The user now should appear on your user list. Check this by clicking the
menu item Users.

User Management
You can view, add, edit, and delete users on the Users menu. When you click it,
you'll have all users on the system displayed.

Chapter 6

[125]

To add a new user you must click on the New User link. You'll be directed to the
page below:

Building the User Portal with SerMyAdmin

[126]

In the preceding page you must complete the fields and click on the Create link, then
the user will be added to the subscriber table. The following page will be shown
after this:

In this page you can modify the information inserted by clicking on Edit, or delete
the user by clicking on Delete.

Chapter 6

[127]

On the User List page you can search for users based on username, domain, and
email; just click on the Search link, and fill out only the desired criteria. On the
following page, we will search for all users with the username jdoe. Click Search;
you'll be directed to the User List that matches your criteria.

Domain Management
You can manage your domains in the same way as you manage your users. Click on
Domains to get a domain list. There, you can add a new domain, delete an existing
domain, and so on. It is important to note that SerMyAdmin doesn't allow a user to
exist without a domain, so when you delete a domain you also delete all users that
belong to that domain.

Interface Customization
For its site layout SerMyAdmin uses a SiteMesh framework, so it's pretty simple to
customize the look of SerMyAdmin to your taste. SiteMesh displays the pages based
on a template that can be found at openser:/usr/local/apache-tomcat-6.0.16/
webapps/serMyAdmin-0.3/WEB-INF/grails-app/views/layouts. There you'll find
main.gsp and notLoggedIn.gsp; these files are Groovy Server Pages that control
how the pages are displayed.

Building the User Portal with SerMyAdmin

[128]

SiteMesh uses HTML meta tags to choose which layout to use; those tags should
be found in the head element of each page, that is, if a page has the tag <meta
content="main" name="layout"/> inside its head element, SiteMesh will use the
main.gsp layout to display it.

You can change main.gsp and notLoggedIn.gsp as you wish, but it's important to
understand that <g:layoutHead /> and <g:layoutBody /> will hold the head and
body tags of the pages using this layout. Another thing to know is that <g:render
template="/menu" /> is used to render page fragments; these page fragments are
GSP files, and their filename should start with an underscore ("_").

To replace the SerMyAdmin logo with one of your own, just put your logo on /usr/
local/apache-tomcat-6.0.16/webapps/serMyAdmin-0.3/images, and edit the
tag that points to the logo_voffice.png in the layout files, just as shown below:

<div class="logo"><img src="${createLinkTo(dir:'images',file:
'my_new_logo.png')}" alt="Grails" /></div>

In the above tag we replaced the SerMyAdmin logo with one of our own, just
changing by the parameter in bold.

You can also change the look and feel of SerMyAdmin by modifying its CSS file,
which can be found at /usr/local/apache-tomcat-6.0.16/webapps/serMyAdmin-
0.3/css; in the main.css file we'll find every class to change SerMyAdmin behavior.

Example: if we change the background class in this file with the following
parameters:

body {
 background: #00f;
 color: #333;
 font: 8px verdana, arial, helvetica, sans-serif;
}

Chapter 6

[129]

we will end getting a page that looks like this:

This page isn't the prettiest thing on the planet, but you can follow this example to
make it look a lot better.

Summary
In this chapter, you have learned why it is important to have a user and
administrator portal. It is a piece of software to which you should pay a lot of
attention. Several VoIP providers fail to allocate time and resources to the important
task of building the portal. OpenSER is an amazing SIP proxy, but a SIP proxy is just
one of the components in a VoIP Provider. Without a good administrator and user
interface a VoIP provider project can easily fail. SerMyAdmin is our contribution
to your project. Developed in Java using Groovy on Rails it is licensed according to
GPL version 2. You have learned how to install, manage users and domains, and
how to customize the appearance. The tool can do a lot more things, and we will
show it again in the next chapters in some other tasks.

Connectivity to the PSTN
In the last two chapters, we have prepared OpenSER to handle calls using
authentication and a database. SerMyAdmin was used to handle the database
records. However, you still can't send calls to ordinary phones, because you are not
connected to the PSTN. The challenge now is to route calls from and to the PSTN
(Public Switched Telephone Network).

To send calls to the PSTN, you will need a device called a SIP PSTN Gateway. There
are several manufacturers of this kind of equipment in the market such as Cisco,
AudioCodes, Nortel, Quintum, and others. You can also use an Asterisk PBX box for
this task. Asterisk makes an affordable PSTN gateway that is very competitive with
the big players mentioned above. It is fully open source, licensed according to GPL.

Connectivity to the PSTN

[132]

By the end of this chapter, you will be able to:

Interconnect OpenSER to a SIP gateway
Apply permissions to inbound calls
Use ACLs to protect the PSTN gateway from unauthorized use
Use the LCR (Least Cost Route) module to route your calls
Use SerMyAdmin to manage Trusted Hosts, Gateways, and Routes

In this chapter you will learn how to send calls to the PSTN. We will introduce three
new modules (LCR, PERMISSIONS, and GROUP), which will help you to route and
secure these calls. It is important to understand a little about regular expressions,
because they will be used to route the calls. It is very easy to find a tutorial for regexps
on the Internet. If you are not familiar with regular expressions or regexps, this quick
reference card can help: http://www.visibone.com/regular-expressions/.

Where Are We?
The VoIP provider solution has many components. To avoid loosing the perspective,
we will show this picture on every chapter. In this chapter, we are working with the
SIP proxy component together with the PSTN Gateway.

•

•

•

•

•

Chapter 7

[133]

After this chapter our VoIP provider will be able to send calls to the PSTN using a
SIP gateway.

Requests Sent to the Gateway
In the requests addressed to the gateway, we have to verify to which group a certain
user belongs to check if he or she is allowed to use the PSTN.

For this purpose we are going to use the 'group' module. This module exports the
function is_user_in ("credentials", "group") to check if a user belongs to a
specified group. In the above example we had created three groups: local for local
calls, ld for long distance, and int for international calls. In the script we use regular
expressions to check if the calls are local, long distance, or international.

You have to insert the groups in the MySQL table called group before to use it. You
can easily insert, remove, and show group membership using:

openserctl acl show [<username>]

openserctl acl grant <username> <group>

openserctl acl revoke <username> [<group>]

•

•

•

Connectivity to the PSTN

[134]

It is possible too, to manage your tables using SerMyAdmin. To add and remove
groups, you can browse the User Groups section. There, you can add and
delete groups.

To change user's group membership, you can go to the user menu as shown here:

Use the checkboxes to select the specific groups to which the user belongs as
shown here.

Chapter 7

[135]

Requests Coming From the Gateway
Now, we will use the module PERMISSIONS to authorize calls coming from the
PSTN Gateway without the digest authentication process.

The function allow_trusted() that we will use is exported by the PERMISSIONS
module. The permissions module can be used to authorize REGISTER, REFER, and
INVITE requests. It can be regulated by the files permissions.allow, permissions.
deny, register.allow, and register.deny. However, the allow_trusted()
function used in this module checks the source IP address of the request against the
'trusted' table of our database.

When called, the function allow_trusted() tries to find a rule matching the request.
The rules contain the following fields <IP source address>, <transport protocol>,
<regular expression>.

A request is accepted if a rule exists where:

The IP address is equal to the IP source address of the request.
The transport protocol is any or matches the transport protocol of the request.
The regular expression is empty or matches the request.

It is very usual for gateways not to register on the SIP proxy. Thus, requests coming
from the gateway should not receive a "407 Proxy Authentication Required"
response. In our current script all INVITE requests coming from our domain are
challenged for their credentials. However, if a request like this is sent from the
gateway, it probably won't have the credentials to be sent and the call will fail. To fix
this we will just check the source IP address using the allow_trusted() function
instead of checking the credentials.

•

•

•

Connectivity to the PSTN

[136]

Don't forget to insert the trusted IP addresses in the trusted table of our
MySQL database for this script to work.

You can view and update the trusted hosts list using SerMyAdmin. Use the trusted
hosts menu as shown below:

To add new hosts, simply click in the New Trusted Host menu item.

To forward the call to the PSTN gateway use the function rewritehostport().

Chapter 7

[137]

This script is named openser.pstn. It is found at http://www.sermyadmin.org/
openser. A copy is shown below. Changes from previous scripts are highlighted.

------------------ module loading ----------------------------------
#set module path
mpath="//lib/openser/modules/"

loadmodule "mysql.so"
loadmodule "sl.so"
loadmodule "tm.so"
loadmodule "rr.so"
loadmodule "maxfwd.so"
loadmodule "usrloc.so"
loadmodule "registrar.so"
loadmodule "textops.so"
loadmodule "uri.so"
loadmodule "uri_db.so"
loadmodule "domain.so"
loadmodule "permissions.so"
loadmodule "group.so"
loadmodule "mi_fifo.so"

Uncomment this if you want digest authentication
mysql.so must be loaded !
loadmodule "auth.so"
loadmodule "auth_db.so"

----------------- setting module-specific parameters ---------------

modparam("mi_fifo", "fifo_name", "/tmp/openser_fifo")
modparam("usrloc", "db_mode", 2)
modparam("auth_db", "calculate_ha1", yes)
modparam("auth_db", "password_column", "password")
modparam("rr", "enable_full_lr", 1)
modparam("auth_db|permissions|uri_db|usrloc","db_url",
 "mysql:// openser:openserrw@localhost/openser")

Connectivity to the PSTN

[138]

modparam("permissions", "db_mode", 1)
modparam("permissions", "trusted_table", "trusted")

------------------------- request routing logic -------------------

main routing logic

route{

	 #
	 # -- 1 -- Request Validation
	 #
	 if (!mf_process_maxfwd_header("10")) {
		 sl_send_reply("483","Too Many Hops");
		 exit;
	 };

	 if (msg:len >= 2048) {
		 sl_send_reply("513", "Message too big");
		 exit;
	 };

	 #
	 # -- 2 -- Routing Preprocessing
	 #
	 ## Record-route all except Register
	 if (!method=="REGISTER") record_route();

	 ##Loose_route packets
	 if (loose_route()) {
		 # mark routing logic in request
		 append_hf("P-hint: rr-enforced\r\n");
		 route(1);
	 };

#CANCEL processing
 if (is_method("CANCEL")) {
 if (t_check_trans()) t_relay();
 exit;
 };

 t_check_trans();
	 #
	 # -- 3 -- Determine Request Target
	 #
	 if (method=="REGISTER") {
		 route(2);
	 } else {
		 route(3);
	 };

}

route[1] {
	 #

Chapter 7

[139]

	 # -- 4 -- Forward request to target
	 #
	 ## Forward statefully
	 if (!t_relay()) {
		 sl_reply_error();
	 };
	 exit;
}

route[2] {
	 ## Register request handler
	 if (is_uri_host_local()) {
		 if (!www_authorize("", "subscriber")) {
			 www_challenge("", "1");
			 exit;
		 };

		 if (!check_to()) {
			 sl_send_reply("403", "Forbidden");
			 exit;
		 };

		 save("location");
 	 exit;
	 } else if {
		 sl_send_reply("403", "Forbidden");
	 };
}

route[3] {
	 ## INVITE request handler
	 if (is_from_local()){
 # From an internal domain -> check the credentials
 and the FROM
	 if(!allow_trusted()){
	 if (!proxy_authorize("","subscriber")) {
	 proxy_challenge("","1");
	 exit;
	 } else if (!check_from()) {
	 sl_send_reply("403", "Forbidden, use From=ID");
	 exit;
	 };
	 } else {
	 log("Request bypassed the auth.using allow_trusted");
	 };
		
	 consume_credentials();

Connectivity to the PSTN

[140]

 #Verify aliases, if found replace R-URI.
 lookup("aliases");

 if (is_uri_host_local()) {
 # -- Inbound to Inbound
 route(10);
	 } else {
 # -- Inbound to outbound
 route(11);
	 };

	 } else {
		 #From an external domain ->do not check credentials
		 #Verify aliases, if found replace R-URI.
		 lookup("aliases");
		 if (is_uri_host_local()) {
 #-- Outbound to inbound
 route(12);
		 } else {
 # -- Outbound to outbound
 route(13);
		 };
	 };
}

route[4] {
 # routing to the public network
 rewritehostport("10.1.30.45");
 route(1);
}

route[10] {
 #from an internal domain -> inbound
 #Native SIP destinations are handled using the location table
 #Gateway destinations are handled by regular expressions
 append_hf("P-hint: inbound->inbound \r\n");

 if (uri=~"^sip:[2-9][0-9]{6}@") {
 if (is_user_in("credentials","local")) {
 route(4);
 exit;
 } else {
 sl_send_reply("403", "No permissions for local calls");
 exit;
 };
 };

Chapter 7

[141]

 if (uri=~"^sip:1[2-9][1-9]{9}@") {
 if (is_user_in("credentials","ld")) {
 route(4);
 exit;
 } else {
 sl_send_reply("403", "No permissions for long distance");
 exit;
 };
 };

 if (uri=~"^sip:011[0-9]*@") {
 if (is_user_in("credentials","int")) {
 route(4);
 exit;
 } else {
 sl_send_reply("403", "No permissions for
 international calls");
 };
 };

 if (!lookup("location")) {
 sl_send_reply("404", "Not Found");
 exit;
 };
 route(1);
}

route[11] {
 # from an internal domain -> outbound
 # Simply route the call outbound using DNS search
 append_hf("P-hint: inbound->outbound \r\n");
 route(1);
}

route[12] {
 # From an external domain -> inbound
 # Verify aliases, if found replace R-URI.
 lookup("aliases");
 if (!lookup("location")) {
 sl_send_reply("404", "Not Found");
 exit;
 };
 route(1);
}

route[13] {

Connectivity to the PSTN

[142]

 #From an external domain outbound
 #we are not accepting these calls
 append_hf("P-hint: outbound->inbound \r\n");
 sl_send_reply("403", "Forbidden");
 exit;
}

openser.cfg Inspection
The PERMISSIONS module exports some essential functions to control access to our
SIP proxy. One of this functions is allow_trusted() which will permit us to control
the gateway access to the proxy using the IP address instead of the authentication
credentials. The trusted table is the repository for the trusted addresses. You
should insert the IP address and transport protocol of each gateway to this database.
This will allow the requests coming from the gateway to avoid the standard
digest authentication.

The PERMISSIONS module, has standard permission and deny files too. We are
not using these features at this time. To avoid messages in the log, please copy the
files from the config directory of the PERMISSIONS module to the /etc/openser
directory.

cp /usr/src/openser-1.2.2/modules/permissions/config/* /etc/openser

In the permissions files, it is possible to filter requests based on regular expressions,
improving the security of the environment. Check the sample files for the
right syntax.

The module group.so will be used to check the user's group membership. This is
called an ACL (Access Control List). You can add, remove, or show the user ACLs
using the openserctl utility.

loadmodule "permissions.so"
loadmodule "group.so"

The first line below informs the module where to find the database passing the
required credentials. The second line instructs the modules to use caching on the
database access to enhance the performance.

modparam("auth_db|permissions|uri_db|usrloc","db_url",
"mysql://openser:openserrw@localhost/openser")
modparam("permissions", "db_mode", 1)

Chapter 7

[143]

When your Proxy server receives an INVITE request the usual behavior is to
challenge the UAC for its credentials. However, PSTN gateways usually do not
respond to the authentication. Thus you need to adopt a special procedure. The
function allow_trusted() will check the source IP address of the INVITE request
against the 'trusted' table of our database. If it matches the request will be allowed. If
it doesn't match the requester will be challenged for the credentials.

 if(!allow_trusted()){
 if (!proxy_authorize("","subscriber")) {
 proxy_challenge("","0");
 exit;
 } else if (!check_from()) {`
 sl_send_reply("403","Forbidden, use FROM=ID");
 exit;
 };
 };

It is important that the gateway's IP address be properly inserted in
the database.

You can use utilities such as SerMyAdmin or phpMyAdmin to maintain the
database. It is easier than doing it manually in the MySQL CLI (command
line interface).

In the 'trusted' table insert the gateway's IP address, transport protocol (udp, tcp, tls,
any), and regular expression.

Below we have the routing of calls according to regular expressions:

 if (uri=~"^sip:[2-9][0-9]{6}@") {
 if (is_user_in("credentials","local")) {
 route(4);
 exit;
 } else {
 sl_send_reply("403", "No permissions for local calls");
 exit;
 };
 };

 if (uri=~"^sip:1[2-9][0-9]{9}@") {
 if (is_user_in("credentials","ld")) {
 route(4);
 exit;
 } else {
 sl_send_reply("403", "No permissions for long distance");
 exit;

Connectivity to the PSTN

[144]

 };
 };

 if (uri=~"^sip:011[0-9]*@") {
 if (is_user_in("credentials","int")) {
 route(4);
 exit;
 } else {
 sl_send_reply("403", "No permissions for
 internat. calls");
 exit;
 };
 };

Local calls are identified by the number of digits (7) and starting with a number in
the range of 2 to 9 ("^sip:[2-9][0-9]{6}@"). Long distance numbers will match the
regular expression "^sip:1[2-9][0-9]{9}@", numbers starting with 1 followed by
2 to 9, plus 9 digits will be considered long distance. Finally, International numbers
are prefixed with 011+Country Code+Area Code+Dialed Number. In all cases the
script is sent to route 4.

It is important to insert the ACL data in the database for this script
to work:

You can do this using the openserctl utility, SerMyAdmin, or phpMyAdmin.

Finally, we have routing block 4 to handle PSTN destinations. The function
rewritehostport() is used to change the host part of the URI in such a way that it
will be sent to the gateway when you relay the request using t_relay().

route[4] {
 ##--
 ## PSTN gateway handling
 ##--
 rewritehostport("10.1.30.45");
 route(1);
}

Chapter 7

[145]

Lab—Using Asterisk as a PSTN Gateway
Using the sketch provided in this chapter, write a script to send PSTN calls to a
PSTN Gateway. You can use phpMyAdmin, or the MySQL command line to insert
data on the database.

Step 1—Add the gateway address in the trusted table using SerMyAdmin:

If desired or convenient, you can instead use the MySQL command line interface to
achieve the same result.

#mysql –u openser –p
-- enter your mysql password --
mysql> use openser;
mysql> INSERT INTO trusted (src_ip, proto, from_pattern)
VALUES ('10.1.30.22', 'any', '^sip:.*$');

The records above tell the OpenSER script to allow requests coming from the IP
address 10.1.30.22 with any transport protocol, matching the regular expression
^sip:.*$. You can use the following command if you don't want to reload OpenSER.

#openserctl fifo trusted_reload

Step 2—Include your served domains in the domain table (if you have not
done before).

openserctl domain add sermyadmin.org

Connectivity to the PSTN

[146]

You can also use SerMyAdmin to do this.

Step 3—Include the user into the groups (local, ld, and int):

#openserctl acl grant 1000@sermyadmin.org local
#openserctl acl grant 1000@sermyadmin.org ld
#openserctl acl grant 1000@sermyadmin.org int
#openserctl acl grant 1001@sermyadmin.org local

To use SerMyAdmin, just go to the screen below:

Step 4—Configuring Asterisk as a gateway.

Two very popular gateways for OpenSER are Asterisk and Cisco AS5300.
Gateways from other manufacturers can be used too; check their documentation for
instructions. Let's see how to configure a Cisco 2601 with two FXO interfaces and an
Asterisk with an E1 PSTN card.

Chapter 7

[147]

Warning
It is important to prevent the direct sending of SIP packets to gateways.
The SIP proxy should be in front of the gateway and a firewall should
prevent users from sending SIP requests directly to the gateway.

Step 5—Setting up the Asterisk Server or the Cisco Gateway.

We will assume that the PSTN side of the Asterisk gateway is already configured.
Now let's change the SIP configuration (sip.conf) of our gateway and its dial
plan (extensions.conf). We will configure Asterisk to send to the proxy each call
coming from the PSTN and vice versa. We are using the guest feature of the SIP
channel on the Asterisk Server. Prior knowledge of Asterisk is required here. Below
is the simplest configuration allowing Asterisk to communicate with OpenSER.
Please, adapt this script to your topology.

Warning
Allow SIP packets to your asterisk server, coming only from your SIP
server. Do not allow SIP packets coming from other destinations. You can
use IP Tables to do this, consult a Linux security specialist, if you are
in doubt.

Asterisk Gateway (sip.conf)
[general]
context=sipincoming
#calls incoming from the SIP proxy to be terminated in the PSTN lines

[sipproxy]
#calls incoming from the PSTN to be forwarded to clients behind the
SIP
#proxy
type=peer
host=10.1.30.22

Asterisk (extensions.conf)
[general]

[globals]

[sipincoming]
exten=>_[0-9].,1,Dial(Zap/g1/${EXTEN:1})
exten=>_[0-9].,2,hangup()
[sipoutgoing]
If you have a digital interface use the lines below
exten=_[0-9].,1,Answer()
exten=_[0-9].,2,dial(SIP/${EXTEN}@sipproxy)

Connectivity to the PSTN

[148]

exten=_[0-9].,3,Hangup()

#If you have analog FXO interfaces use the lines below.
exten=s,1,Answer()
exten=s,2,dial(SIP/${EXTEN}@sipproxy)
exten=s,3,Hangup()

Cisco 2601 Gateway
The following explanation could help, but prior knowledge of Cisco gateways is
required to complete this configuration. The call routing on Cisco gateways is done
by the instruction dial peer. Any call with the number called starting with 9 followed
by any number (9T) is forwarded to the PSTN on the ports 1/0 or 1/1 as instructed
by the dial peer voice 1 and 2 POTS lines (plain old telephone system). Called
numbers starting from 1 to 9 with any number of digits following will be directed
to the SIP proxy in the IP address 10.1.3.22 as instructed in the 'dial-peer voice 123
voip' line.

voice class codec 1
 codec preference 2 g711ulaw
!
interface Ethernet0/0
 ip address 10.1.30.38 255.255.0.0
 half-duplex
!
ip classless
ip route 0.0.0.0 0.0.0.0 10.1.0.1
no ip http server
ip pim bidir-enable
!
voice-port 1/0
!
voice-port 1/1
!
mgcp profile default
!
! The dial-peer pots commands will handle the calls coming from SIP
!dial-peers. Any call matching 9 followed by any number of digits will
be !forwarded to the PSTN with the 9 striped.

dial-peer voice 1 pots
 destination-pattern 9T
	 port 1/0
!
dial-peer voice 2 pots

Chapter 7

[149]

 destination-pattern 9T
	�������� port 1/1

!
!The dial-peer voip commands will handle the calls coming from the
pots !dial peers (PSTN). You can prefix a number (80 in this example)
and send the DID number ahead.
!
dial-peer voice 123 voip
 destination-patternT
 ��������� prefix 80
 forward all
 session protocol sipv2
 session target ipv4:10.1.30.22
 dtmf-relay sip-notify

Step 6—Test the configuration making and receiving calls.

Using LCR (Least Cost Routes)
The last configuration is fine, if you have a few gateways and the routes do not
change often. However, most SIP providers change routes very often. Besides, most
of them have multiple gateways and connections to VoIP wholesale providers. It is
counterproductive to change the script every time a route needs to be changed. So
the LCR module will be used. It allows you to insert the routes and gateways in the
database and change them dynamically to adjust the system to your requirements.

Imagine a situation where you have two wholesale providers, one in Europe
and another in Asia. You want to send local and long distance calls to your own
gateways, calls to the Netherlands, Germany, and France to the provider in Europe,
and calls to Japan and Australia to the Asia provider. If the Asia provider fails, you
want to fallback the call to your own gateways.

The LCR Module
The LCR module implements two capabilities. The most important is the sequential
forwarding of a request to one or more gateways (load_gws() and next_gw()).
These functions will be used to send the calls to the gateways and even failover the
gateways using failure_route and next_gw(). The gateways can have a priority
assigned to them to specify which gateway to select first.

You can also use the LCR module for sequential forwarding of contacts based on q
value using load_contacts() and next_contacts().

Connectivity to the PSTN

[150]

Configuration Diagram

To implement a diagram such as that above, we need to understand the three tables
involved, lcr, gw, and gw_grp.

VoIP Provider Dial Plan
It is time to start elaborating a dial plan for our VoIP provider. We will implement
the E.164 numbering scheme to direct calls to the right gateways. When the customer
calls a local number we will use regular expressions to transform the number to their
canonical E.164 address before selecting a gateway using the load_gw() function.
This provider won't accept any number in a format different from the E.164 except
for the subscribers. We are assuming that the user interface will help the user to dial
the E.164 number.

Destination Numbering Description
VoIP provider callers "8[0-9]{5}" Six digits starting with 8
Long distance calls "1[2-9][0-9]{9}" 1+Area Code+Subscriber(7 digits)
International Calls "+[0-9]*" Any number starting with +
International calls "011[0-9]*" Any number starting with 011

Chapter 7

[151]

The LCR Table
In the lcr table you will implement the routes. The lcr fields are described below.
Local calls and long distance calls will be prefixed with the number +1305

Prefix From_uri Grp_id Priority
+31 3 1
+49 3 1
+61 2 1
+81 2 1
+1 1 1

Prefix—This prefix is matched against the user part of the URI
(phone number).
From_uri—The From_uri may contain a URI to be matched. It is used
sometimes when you want to route using caller information.
Grp_id—The Grp_id identifies the gateway group.
Priority—Gateway priority.

The Gateways Table
gw_name grp_id ip_addr port uri_scheme transport strip prefix
Usa1 1 10.1.30.45 5060 1 1 2

Usa2 1 10.1.30.46 5060 1 1 2

Asia1 2 200.61.61.61 5060 1 1 0

Europe1 3 200.31.31.31 5060 1 1 0

gw_name—Gateway name
grp_id—Gateway group identification
ip_addr—IP address of the gateway (for versions below 1.2.x, use inverse
decimal notation)
port—(UDP/TCP port)
uri_scheme—sip (1), sips (2)
transport—udp (1), tcp (2), tls (3)
strip—Number of characters to be striped
prefix—Prefix to be applied before sending to the gateway

•

•

•

•

•

•

•

•

•

•

•

•

Connectivity to the PSTN

[152]

The Gateway Groups Table
The gateway groups table is used for administrative purposes only. It associates the
name to the gateway.

Adding, Removing, and Showing LCR and
Gateways
You can add, remove, and show the LCR table and Gateways table using
openserctl or SerMyAdmin. You can do it manually too.

If you are using OpenSer 1.0.x or 1.1.x, just observe that the IP address
for this field must be in the inverse decimal notation.

To convert the IP address to the decimal inverse notation, do the following calculation:

IP Address=a.b.c.d
IP Address in the inverse decimal notation = d*224+c*216+b*28+a

If you don't want to calculate, just use the openserctl utility. It works fine for all
versions. In the OpenSER 1.2.x you can insert the IP address in the usual decimal
dotted notation directly in the database.

Openserctl LCR-Related Commands.
Command Description
lcr show Show routes, gateways, and groups
lcr reload Reload lcr gateways
lcr addgw_grp <grp_name> Add gateway group, autocreate grp_id
lcr addgw_grp <grp_name> <grp_id> Add gateway group with grp_id
lcr rmgw_grp <grp_id> Delete the gw_grp
lcr addgw <gw_name> <ip> <port> <scheme>
<transport> <grp_id>

Add a gateway

lcr addgw <gw_name> <ip> <port> <scheme>
<transport> <grp_id> <prefix>

Add a gateway with prefix

lcr addgw <gw_name> <ip> <port> <scheme>
<transport> <grp_id> <prefix> <strip>

Add a gateway with prefix and strip

lcr rmgw <gw_name> Delete a gateway
lcr addroute <prefix> <from> <grp_id> <prio> Add a route
lcr rmroute <prefix> <from> <grp_id> <prio> Delete a route

•

•

Chapter 7

[153]

Notes:
IP addresses must be entered in dotted quad format e.g. 1.2.3.4.

<uri_scheme> and <transport> must be entered in integer or text:

transport '2' is identical to transport 'tcp'
scheme: 1=sip, 2=sips; transport: 1=udp, 2=tcp, 3=tls

Examples:
lcr addgw_grp usa 1
lcr addgw level3 1.2.3.4 5080 sip tcp 1
lcr addroute +1 ' ' 1 1

Lab—Using the LCR Feature

Let's execute a simple lab with LCR. For this lab we will need one OpenSER server,
two gateways, and an IP phone. You can easily simulate this lab using Asterisk as the
gateways and virtual machines.

Step 1: Build the LAB with the gateways. Configure the gateway named usa1 to
receive calls with the +1 prefix and the br1 gateway to receive calls prefixed by +55.
In the gateway you can prefix and strip the data before sending to the PSTN. To
prefix and strip numbers, use the strip() and prefix() core functions. See the
documentation for futher details at www.openser.org.

•

•

°

°

Connectivity to the PSTN

[154]

Step 2: Download the configuration file from http://www.sermyadmin.org/
openser/openser.lcr and copy it to openser.cfg.

cd /etc/openser
wget http://www.sermyadmin.org/openser/openser.lcr
cp openser.lcr openser.cfg
The script can be seen below with the modifications highlighted.
------------------ module loading ----------------------------------
#set module path
mpath="//lib/openser/modules/"

loadmodule "mysql.so"
loadmodule "sl.so"
loadmodule "tm.so"
loadmodule "rr.so"
loadmodule "maxfwd.so"
loadmodule "usrloc.so"
loadmodule "registrar.so"
loadmodule "textops.so"
loadmodule "uri.so"
loadmodule "uri_db.so"
loadmodule "domain.so"
loadmodule "permissions.so"
loadmodule "group.so"
loadmodule "mi_fifo.so"
loadmodule "lcr.so"

Uncomment this if you want digest authentication
mysql.so must be loaded !
loadmodule "auth.so"
loadmodule "auth_db.so"

----------------- setting module-specific parameters ---------------

modparam("mi_fifo", "fifo_name", "/tmp/openser_fifo")
modparam("usrloc", "db_mode", 2)
modparam("auth_db", "calculate_ha1", yes)
modparam("auth_db", "password_column", "password")
modparam("rr", "enable_full_lr", 1)
modparam("auth_db|permissions|uri_db|usrloc","db_url","mysql://
openser:openserrw@localhost/openser")
modparam("permissions", "db_mode", 1)
modparam("permissions", "trusted_table", "trusted")

------------------------- request routing logic -------------------

main routing logic

route{

Chapter 7

[155]

	 #
	 # -- 1 -- Request Validation
	 #
	 if (!mf_process_maxfwd_header("10")) {
		 sl_send_reply("483","Too Many Hops");
		 exit;
	 };

	 if (msg:len >= 2048) {
		 sl_send_reply("513", "Message too big");
		 exit;
	 };

	 #
	 # -- 2 -- Routing Preprocessing
	 #
	 ## Record-route all except Register
	 if (!method=="REGISTER") record_route();

	 ##Loose_route packets
	 if (loose_route()) {
		 # marca a logica de roteamento no pedido
		 append_hf("P-hint: roteado por loose_route\r\n");
		 route(1);
	 };

	 #
	 # -- 3 -- Determine Request Target
	 #
	 if (method=="REGISTER") {
		 route(2);
	 } else {
		 route(3);
	 };
}

route[1] {
	 #
	 # -- 4 -- Forward request to target
	 #
	 ## Forward statefully
	 t_on_failure("1");
	 if (!t_relay()) {
		 sl_reply_error();
	 };
	 exit;
}

Connectivity to the PSTN

[156]

route[2] {
	 ## Register request handler
	 if (is_uri_host_local()) {
		 if (!www_authorize("", "subscriber")) {
			 www_challenge("", "1");
			 exit;
		 };

		 if (!check_to()) {
			 sl_send_reply("403", "Forbidden");
			 exit;
		 };

		 save("location");
 	 exit;
	 } else if {
		 sl_send_reply("403", "Forbidden");
	 };
}

route[3] {
	 ## INVITE request handler
	 if (is_from_local()){
 # From an internal domain -> check the credentials and the FROM
	 if(!allow_trusted()){
	 if (!proxy_authorize("","subscriber")) {
	 proxy_challenge("","1");
	 exit;
	 } else if (!check_from()) {
	 sl_send_reply("403", "Forbidden, use From=ID");
	 exit;
	 };
	 } else {
	 log("Request bypassed the auth.using allow_trusted");
	 };

	 consume_credentials();

 #Verify aliases, if found replace R-URI.
 lookup("aliases");

 if (is_uri_host_local()) {
 # -- Inbound to Inbound
 route(10);
	 } else {
 # -- Inbound to outbound
 route(11);
	 };

	 } else {
		 #From an external domain ->do not check credentials

		 #Verify aliases, if found replace R-URI.
		 lookup("aliases");

Chapter 7

[157]

		 if (is_uri_host_local()) {
 #-- Outbound to inbound
 route(12);
		 } else {
 # -- Outbound to outbound
 route(13);
		 };
	 };
}

route[4] {
 # routing to the public network
	 if (!load_gws()) {
	 sl_send_reply("503", "Unable to load gateways");
	 exit;
 }

 if(!next_gw()){
	 sl_send_reply("503", "Unable to find a gateway");
	 exit;
	 }
	 route(1);
	 exit;
}

route[10] {
 #from an internal domain -> inbound
 #Native SIP destinations are handled using the location table
 #Gateway destinations are handled by regular expressions
 #In our example we will normalize the number to e164 +1305XXXXXX
 #to facilitate the posterior billing.
 append_hf("P-hint: inbound->inbound \r\n");

 if (uri=~"^sip:[2-9][0-9]{6}@") {
 if (is_user_in("credentials","local")) {
 # Assuming your country is USA (+1) and area code (305)
 prefix("+1305");
 route(4);
 exit;
 } else {
 sl_send_reply("403", "No permissions for local calls");
 exit;
 };
 };

 if (uri=~"^sip:1[2-9][0-9]{9}@") {
 if (is_user_in("credentials","ld")) {
 prefix("+");
 route(4);
 exit;
 } else {
 sl_send_reply("403", "No permissions for long distance");

Connectivity to the PSTN

[158]

 	 exit;
 };
 };

 if (uri=~"^sip:011[0-9]*@") {
 if (is_user_in("credentials","int")) {
 strip(2);
 prefix("+");
 route(4);
 exit;
 } else {
 sl_send_reply("403", "No permissions for
 international calls");
 };
 };

 if (!lookup("location")) {
 sl_send_reply("404", "Not Found");
 exit;
 };
 route(1);
}

route[11] {
 # from an internal domain -> outbound
 # Simply route the call outbound using DNS search
 append_hf("P-hint: inbound->outbound \r\n");
 route(1);
}

route[12] {
 # From an external domain -> inbound
 # Verify aliases, if found replace R-URI.
 lookup("aliases");
 if (!lookup("location")) {
 sl_send_reply("404", "Not Found");
 exit;
 };
 route(1);
}

route[13] {
 #From an external domain outbound
 #we are not accepting these calls
 append_hf("P-hint: outbound->inbound \r\n");
 sl_send_reply("403", "Forbidden");
 exit;
}

failure_route[1] {
	 if(!next_gw()) {
	 t_reply("503", "Service not available, no more gateways");
 exit;

Chapter 7

[159]

	 }
	 t_on_failure("1");
	 t_relay();

Step 3: Use ngrep to capture the packets and certify that the packets are going to the
right destinations.

Step 4: Add the routes and gateways according to the table below, using "openserctl
lcr" commands.

lcr Gateway Groups
grp_id grp_name
1 Usa
2 Br

You can use SerMyAdmin to insert gateway groups.

lcr Gateways
gw_name Ip port uri_scheme transport grp_id strip Prefix
usa1 192.168.1.171 5060 1 1 1 0

br1 192.168.1.177 5060 1 1 2 0

Connectivity to the PSTN

[160]

lcr Routes
Prefix From_uri Grp_id Priority
+1 1 1

+55 2 1

+55 1 2

Step 5: Test the calls to any number starting with +1, or +55.

Step 6: Turn off the gateway br1 and test the call to +55 again. The call should go to
the alternative gateway, now the br1 is turned off.

Securing re-INVITES
Now that we are connected to the PSTN it is important to take care of some security
considerations. Re-INVITES are being processed under the loose route section. These
re-INVITES are not being challenged for its credentials. To enhance the security
add the script below to your loose_route section. If the request is sequential
(has_totag()) it need to have a ROUTE header. If it does not have (checked by the
function loose_route()) we will discard the request with an error type "404, Not
Here". Check the file openser.chapter7-3 if you have any doubt.

if (has_totag()) {
		 # sequential request withing a dialog should
		 # take the path determined by record-routing
		 if (loose_route()) {
	 #Check authentication of re-invites
	 if(method=="INVITE" && (!allow_trusted())) {	
 if (!proxy_authorize("","subscriber")) {
	 proxy_challenge("","1");
	 exit;
	 } else if (!check_from()) {

Chapter 7

[161]

	 sl_send_reply("403", "Forbidden, use From=ID");
	 exit;
	 };
 };
 route(1);
		 } else {
			 sl_send_reply("404","Not here");
		 }
		 exit;
}

Blacklists and "473/Filtered Destination"
messages
The DNS blacklist is a feature used for DNS Failover. If you send a call to a gateway
and this gateway is not accessible or is responding with a response code type 5xx
or 6xx, OpenSER uses a resource called "dns blacklist" and insert your gateway in
the blacklist. Your gateway will stay in the blacklist for 4 minutes (may be changed
in compile time in blacklists.h) , before you can send traffic to it again. While the
gateway is in the blacklist, you will receive the message "473/Filtered Destination", if
you try to send calls to this specific gateway. To disable this feature use (it is enabled
by default):

disable_dns_blacklist=yes

You can also create your own lists to blacklist gateway permanently or temporarily
out of service.

Summary
In this chapter you have learned how to configure OpenSER to forward calls to a
gateway. It is important to take care of the security. Using the permissions modules
you can allow the gateways to bypass the digest authentication and permit them
validating only its IP addresses. The group module is important for controlling
the access from the UACs. It is interesting also to validate re-INVITES for their
credentials. From the point you connect to the PSTN, take a lot of care about toll
fraud. I recommend you to have a security specialist verifying your environment
periodically. Often, analyze your call detail records to detect abnormal activity.

Call Forward and Voice Mail
The call forwarding feature is an important feature for VoIP providers. It is
implemented using forking or redirection. When you use forking, a new call leg is
created, sending a new INVITE to the new destination after the first destination fails
(busy or timeout). Using redirection, the proxy sends an answer to the call originator
and gives it the address where it should redirect the call.

By the end of this chapter you will be able to:

Describe concepts such as forking and redirection
Implement call forwarding
Implement call forward on busy
Use the AVP resource to store call forward data
Use the failure route to forward unanswered and busy calls

We will use just forking on this material, because it is safer than redirect and will
allow us to bill the calls. The redirection method is almost useless for VoIP providers,
because the proxy stays out of the signaling path and billing in this situation is
not possible.

Let's verify our progress. The VoIP provider solution has many components. To
avoid loosing perspective, we will show the picture overleaf in every chapter. In
this chapter, we are working with the Media Server component (Asterisk Voice
Mail). There are many other media servers available such as SEMS (SIP Express
Media Server www.iptel.org/sems), Yate, FreeSwitch, and others. We have chosen
Asterisk because of its popularity. The call forwarding feature is important to send
the calls to the media server in several situations. The situation covered in this
chapter is voicemail. The media server might be used for several applications such as
IVRs, to play prompts, text to speech, and voice recognition. Remember that the SIP
Proxy never handles the media, so you will need a Media Server for these situations.

•
•
•
•
•

Call Forward and Voice Mail

[164]

After this chapter our VoIP provider will be able to send unanswered and busy calls
to the voicemail server using serial forking.

Call Forwarding
In this chapter, we will implement three kinds of call forward. This forwarding is
important for voicemail operations.

Blind call forwarding—All INVITE requests sent to this phone number
will be redirected immediately to the phone number stored in the
user_preferences table. The SIP router will fork the call creating a new leg
to the new destination. The phone with call forward configured won't even
ring, registered or not.
Forward on busy—In this case, we will use the failure_route feature to
intercept the "486 Busy" message and create a new leg sending the INVITE
request to the final destination.
Forward on no answer—If a phone replies to an INVITE request with a "408
Request Timeout", OpenSER again will use the failure_route feature to
intercept the message and create a new leg sending the INVITE to the
final destination.

•

•

•

Chapter 8

[165]

All call forwarding destinations are stored in the table user_preferences.
We will introduce new concepts in this chapter such as AVPs (Attribute-Value
Pairs) and pseudo-variables. AVPs are made available by the OpenSER core. The
AVPOPS (Attribute-Value Pairs Operations) module provides several functions
for manipulating AVPs, such as interaction with SIP requests and the database,
operations with strings, and operations with regular expressions.

Pseudo-Variables
Pseudo-variables are system variables that you can use in your script as parameters
or inside functions. These variables are replaced by the corresponding values before
the script execution. Some modules can receive pseudo-variables, such as:

ACC
AVPOPS
TEXTOPS
UAC
XLOG

The name of a pseudo-variable always starts with $. If you want to use the $
character in your script you will have to escape it with $$. There is a pre-defined set
of pseudo-variables. OpenSER pseudo variables used with OpenSER 1.1:

$ar Auth realm
$au Auth username
$br Request's first branch
$bR All Request's branches
$ci Call-ID header
$cl Content length
$cs Cseq
$ct Contact Header
$cT Content Type
$dd Domain of destination URI
$di Diversion header URI
$dp Port of destination URI
$dP Transport protocol of destination URI
$ds Destination set
$du Destination URI
$fd From URI domain

•

•

•

•

•

Call Forward and Voice Mail

[166]

$fn From display name
$ft From Tag
$fu From URI
$fU From URI username
$mb SIP message buffer
$mf Flags
$mF Flags in hexadecimal
$mi SIP message ID
$ml SIP message length
$od Domain in SIP request's original URI
$op Port of Sip request's original URI
$oP Transport protocol of SIP request's original URI
$ou Request's original URI
$oU Username in SIP request's original URI
$pp Process id
$rd Domain in SIP request's URI
$rb Body of request/reply
$rc Returned code
$rm SIP request's method
$rp SIP request's port of R-URI
$rP Transport protocol of SIP request URI
$rr SIP reply reason
$rs SIP reply status
$rt Refer-to URI
$ru SIP request's URI
$rU Username in SIP request's URI
$Ri Received IP address
$Rp Received Port
$si IP source address
$sp Source port
$td To URI domain
$tn To display name
$tt To tag
$tu To URI

Chapter 8

[167]

$tU To URI username
$Tf String formatted time
$Ts Unix time stamp
$ua User agent header
$re Remote-Party-ID header URI

AVP (Attribute-Value Pair) Overview
Operations with attribute-value pairs permit the access and manipulation of user
preferences. An AVP can be seen as a value associated to an identifier (string or
integer). In the OpenSER processing, an AVP is tied to a transaction. The AVP is
allocated when the transaction begins and unallocated when finished.

The introduction of AVPs in the OpenSER processing created several new
possibilities for service implementation and user preference processing per user or
domain. The AVPs can be used directly in the configuration scripts and to load data
from a MySQL database.

An attribute-value pair is referenced in a way very similar to a variable.

$avp(id[N])

Where ID is:

si:name—AVP identifier name. "s" and "i" specify the string or integer.
name—The name of an alias AVP. It can be a string or integer.

Examples:

$avp(i:700)
$avp(s:blacklist)

For those who know Asterisk, the AVPOPS moduleis to OpenSER what AstDB
functions are for Asterisk. However, the implementation is quite different and AVPs
are much more powerful, allowing advanced features such as queries in a database
and pushing data directly to the SIP packet. There are a lot of functions associated
with the AVPs:

avp_db_load: Loads AVPs from the database to the memory
avp_db_store: Store AVPs into the database
avp_db_delete: Delete AVPs from database
avp_db_query: Make a database query and store the results in AVP
avp_delete: Delete AVPs from memory

•

•

•

•

•

•

•

Call Forward and Voice Mail

[168]

avp_pushto: Push the AVP values into the SIP message
avp_check: Check the value of the AVP using an operator (equal, greater
than, etc.) and a value
avp_copy: Copy an AVP to another
avp_printf: Format a string to an AVP
avp_subst: Find and replace values into an AVP
avp_op: Allows math operations on AVPs
is_avp_set: Check if this AVP name is set
avp_print: Print all the AVPs in memory (for debugging purposes)

You can check the syntax for these functions in the documentation. For now,
we have to understand how to use avp_db_load and avp_pushto, which will be
used on our script. There is an excellent tutorial about AVPs at:
http://www.voice-system.ro/docs.

AVPs are not exactly simple. But if you think of them as simple pairs of attributes
and values, they are not so complex too. However, the loading of AVPs from the
database is very confusing. The default table is usr_preference (user preferences).
Sometimes the value that we want is not associated to a specific user, but to a
domain. Anyway, all AVPs being loaded from a database come from the
usr_preference table.

Example: For call forward, we have a call forward associated to user. It is actually a
usr_preference. Let's check the usr_preference table structure.

id uuid username domain attribute type value Last_
modified

1001 callfwd 0 sip:1004@yourdomain

The id is an auto-increment field.

•	 uuid is a unique user identifier
•	 username for username
•	 domain for domain
•	 attribute (the AVP name)
•	 type

(0–AVP str|Val Str, 1–AVP str|Val Int, 2–AVP int|Val Str, 3-AVP int|
Val int)

•	 value (the AVP value)
•	 last modified (the date of the last modification)

•

•

•

•

•

•

•

•

Chapter 8

[169]

The AVPs can be associated to a user or to a domain. So you can load the AVPs
associated with either of these parameters. You can associate an AVP to a uuid
(unique user ID), to a username (single domain setup), or to username and domain
(multi-domain) setups.

In the function avp_db_load the first parameter is the source and the second is the
avp_name. So, the function below will load in the string AVP callfwd the value
of the attribute callfwd for the user matching the requested URI ($ruri) in the
column username.

(avp_db_load("$ruri/username","s:callfwd")

Later on we will push this AVP to the SIP packet changing the original $ruri to the
new one.

avp_pushto("$ruri","s:callfwd");

In other words, if a call forward number is set for this user, instead of calling the
original user, we will call the user stored in the AVP s:callfwd. The magic for the
call forward is to insert the call forward numbers in the usr_preference table.

AVPOPS Module Loading and Parameters
In the module load, we specify the database location, access parameters, and the
AVP table.

loadmodule "/usr/lib/openser/modules/avpops.so"
modparam("avpops", "avp_url", "mysql://openser:openserrw@localhost/
openser")
modparam("avpops", "avp_table", "usr_preferences")

Implementing Blind Call Forwarding
In the first place let's implement the blind call forward service. In the INVITE
processing we will load the AVP named callfwd from the user preference table in
the database. If the callfwd preference was set for this specific user, we will push it
to the R-URI before forwarding the request.

if(avp_db_load("$ruri/username","s:callfwd")){
 #Check the existence of the callfwd attribute on the
 #usr_preferences table. If found, assign the vaue to the AVP
 # and push the value to the ruri of the SIP header.
 avp_pushto("$ruri","s:callfwd");
 route(1);
 exit;
};

Call Forward and Voice Mail

[170]

To make this feature work, it is important to insert the right entries in the database.
The table used by AVPs is the usr_preferences.

Username Type Attribute Value
1001 0 callfwd sip:1004@yourdomain

You can modify the user preferences with the help of SerMyAdmin; just browse to
user preferences on the menu. There you can view all user preferences, edit them,
and create new ones.

If you are working in a multi-domain environment, please enable the multi-domain
parameter of the module AVPOPS and also populate the database with the
domain name.

With the record above we are telling the system to forward any call to 1001 to the
URI sip:1004@yourdomain.

Lab—Implementing Blind Call Forwarding
Step 1: Let's insert the AVP pairs using the SerMyAdmin interface first seen
in Chapter 6.

In your browser access the SerWEB admin interface:

http://<your-ip-server-address>:8080/serMyAdmin

Step 2: Log in to the interface using a user in the "Global Administrator" role.

Chapter 8

[171]

Step 3: Click on the User Preferences tab. In this menu click on the "New Preference"
button and create an AVP for the user you want to forward the calls from; in this
case it should be 1000@sermyadmin.org. Its attribute must be called callfwd and
the value will be the URI you want to forward the calls to; here it should be set to
1004@sermyadmin.org.

Step 4: Edit the openser.cfg file to include the instructions explained above. The
file should end up as below. Include the following lines in the openser.cfg file.
Or simply copy the file openser.callfwd1 from http://www.sermayadmin.org/
openser to the openser.cfg file.

In the module loading section:

loadmodule "avpops.so"

loadmodule "xlog.so"

In the module parameters section:

modparam("avpops", "avp_url",
 "mysql://openser:openserrw@localhost/openser")

modparam("avpops", "avp_table", "usr_preferences")

In the route[3] section:

route[3] {
	 #
	 # -- INVITE request handler --
	 #
	 if (is_from_local()){

Call Forward and Voice Mail

[172]

 # From an internal domain -> check the credentials and the FROM
	 if(!allow_trusted()){
	 if (!proxy_authorize("","subscriber")) {
	 proxy_challenge("","1");
	 exit;
	 } else if (!check_from()) {
	 sl_send_reply("403", "Forbidden, use From=ID");
	 exit;
	 };
	 } else {
	 log("Request bypassed the auth. using allow_trusted");
	 };
		
 if(avp_db_load("$ru/username","$avp(s:callfwd)")) {
 avp_pushto("$ru", "$avp(s:callfwd)");
 xlog("forwarded to: $avp(s:callfwd)");
 route(1);
		 exit;
	 }
	 consume_credentials();	

Step 5: Register the phones 1001 and 1004. Call from phone 1001 to phone 1000.
It should forward the call to the call to phone 1004 as instructed in the
usr_preferences table.

Implementing Call Forward on Busy or
Unanswered

Chapter 8

[173]

This is the second part of this chapter. Now we will introduce two new important
concepts. The first one is the failure_route and the second one is the
append_branch used to fork the call. We will handle the following failure situations:

408 – Timeout
486 – Busy Here
487 – Request Cancelled

To implement call forward on busy and call forward when unanswered, we will use
the concept of the failure route.

In the logic below, just before sending the INVITE to the standard processing we
will call the function t_on_failure("1"). This allows us to handle the SIP failure
messages (with reply codes higher than 299, also called negative replies) in
failure_route[1].

When receiving a call in this situation we will forward it to a voicemail system.
Asterisk can make a good voicemail system. Let's see how to integrate Asterisk
to record the voicemail messages. We will prefix the URI with b (busy) to inform
the Asterisk server to play the busy message and u (unanswered) to play the
unanswered message. Asterisk will process the voicemail requests using the
application voicemail(b${EXTEN}) for busy messages and voicemail(u${EXTEN})
for unanswered messages.

Below is the complete script with the changes highlighted.

#
#
$Id: openser.cfg 1676 2007-02-21 13:16:34Z bogdan_iancu $
#
simple quick-start config script
Please refer to the Core CookBook at http://www.openser.org/
dokuwiki/doku.php
for a explanation of possible statements, functions and parameters.
#

----------- global configuration parameters ------------------------

debug=3 # debug level (cmd line: -dddddddddd)
fork=yes
log_stderror=no # (cmd line: -E)
children=4
port=5060

------------------ module loading ----------------------------------

•

•

•

Call Forward and Voice Mail

[174]

#set module path
mpath="//lib/openser/modules/"

Uncomment this if you want to use SQL database
#loadmodule "mysql.so"

loadmodule "mysql.so"
loadmodule "sl.so"
loadmodule "tm.so"
loadmodule "rr.so"
loadmodule "maxfwd.so"
loadmodule "usrloc.so"
loadmodule "registrar.so"
loadmodule "textops.so"
loadmodule "uri.so"
loadmodule "uri_db.so"
loadmodule "domain.so"
loadmodule "permissions.so"
loadmodule "group.so"
loadmodule "mi_fifo.so"
loadmodule "lcr.so"
loadmodule "avpops.so"
loadmodule "xlog.so"

Uncomment this if you want digest authentication
mysql.so must be loaded !
loadmodule "auth.so"
loadmodule "auth_db.so"

----------------- setting module-specific parameters ---------------

modparam("mi_fifo", "fifo_name", "/tmp/openser_fifo")
modparam("usrloc", "db_mode", 2)
modparam("auth_db", "calculate_ha1", yes)
modparam("auth_db", "password_column", "password")
modparam("rr", "enable_full_lr", 1)
modparam("auth_db|permissions|uri_db|usrloc","db_url","mysql://
openser:openserrw@localhost/openser")
modparam("permissions", "db_mode", 1)
modparam("permissions", "trusted_table", "trusted")
modparam("avpops", "avp_url", "mysql://openser:openserrw@localhost/
openser")
modparam("avpops", "avp_table", "usr_preferences")

Chapter 8

[175]

------------------------- request routing logic -------------------

main routing logic

route{

	 #
	 # -- 1 -- Request Validation
	 #
	 if (!mf_process_maxfwd_header("10")) {
		 sl_send_reply("483","Too Many Hops");
		 exit;
	 };

	 if (msg:len >= 2048) {
		 sl_send_reply("513", "Message too big");
		 exit;
	 };

	 #
	 # -- 2 -- Routing Preprocessing
	 #
	 ## Record-route all except Register
	 if (!method=="REGISTER") record_route();

 ##Loose_route packets
 if (has_totag()) {
 #sequential request withing a dialog should
 # take the path determined by record-routing
 if (loose_route()) {
 #Check authentication of re-invites
 if(method=="INVITE" && (!allow_trusted())) {
 if (!proxy_authorize("","subscriber")) {
 proxy_challenge("","1");
 exit;
 } else if (!check_from()) {
 sl_send_reply("403", "Forbidden, use From=ID");
 exit;
 };
 };
 route(1);
 } else {
 sl_send_reply("404","Not here");
 }

Call Forward and Voice Mail

[176]

 exit;
 }

 #CANCEL processing
 if (is_method("CANCEL")) {
 if (t_check_trans()) t_relay();
 exit;
 };

 t_check_trans();

	 #
	 # -- 3 -- Determine Request Target
	 #
	 if (method=="REGISTER") {
		 route(2);
	 } else {
		 route(3);
	 };
}

route[1] {
	 #
	 # -- 4 -- Forward request to target
	 #
	 ## Forward statefully
	 t_on_failure("1");
	 if (!t_relay()) {
		 sl_reply_error();
	 };
	 exit;
}

route[2] {
	 ## Register request handler
	 if (is_uri_host_local()) {
		 if (!www_authorize("", "subscriber")) {
			 www_challenge("", "1");
			 exit;
		 };

		 if (!check_to()) {
			 sl_send_reply("401", "Unauthorized");

Chapter 8

[177]

			 exit;
		 };

		 save("location");
		 exit;
	 } else if {
		 sl_send_reply("401", "Unauthorized");
	 };
}

route[3] {
	 ## Non-Register request handler
	 if (is_from_local()){
 # From an internal domain -> check the credentials and FROM
	 if(!allow_trusted()){
	 if (!proxy_authorize("","subscriber")) {
	 proxy_challenge("","1");
	 exit;
	 } else if (!check_from()) {
	 sl_send_reply("403", "Forbidden, use From=ID");
	 exit;
	 };
	 } else {
	 log("Request bypassed the auth.using allow_trusted");
	 };

	 if(avp_db_load("$ru/username","$avp(s:callfwd)")) {
		 avp_pushto("$ru", "$avp(s:callfwd)");
		 route(1);
		 exit;
	 }
		
	 consume_credentials();
		
 #Verify aliases, if found replace R-URI.
 lookup("aliases");
				
 if (is_uri_host_local()) {
 # -- Inbound to Inbound
 route(10);
	 } else {
 # -- Inbound to outbound
 route(11);
	 };

Call Forward and Voice Mail

[178]

	 } else {
		 #From an external domain ->do not check credentials
		 #Verify aliases, if found replace R-URI.
		 lookup("aliases");
		 if (is_uri_host_local()) {
 #-- Outbound to inbound
 route(12);
		 } else {
 # -- Outbound to outbound
 route(13);
		 };
	 };
}

route[4] {
 # routing to the public network
	 if (!load_gws()) {
	 sl_send_reply("503", "Unable to load gateways");
	 exit;
 }
	
 if(!next_gw()){
	 sl_send_reply("503", "Unable to find a gateway");
	 exit;
	 }
	 route(5);
	 exit;
}

route[5] {
	 #
	 # -- 4 -- T_relay for gateways
	 #
	 ## Forward statefully, if failure load other gateways
	 t_on_failure("2");
	 if (!t_relay()) {
		 sl_reply_error();
	 };
	 exit;
}

route[10] {
 #from an internal domain -> inbound
 #Native SIP destinations are handled using the location table

Chapter 8

[179]

 #Gateway destinations are handled by regular expressions
 append_hf("P-hint: inbound->inbound \r\n");

 if (uri=~"^sip:[2-9][0-9]{6}@") {
 if (is_user_in("credentials","local")) {
 prefix("+1");
		 route(4);
 exit;
 } else {
 sl_send_reply("403", "No permissions for local calls");
 exit;
 };
 };

 if (uri=~"^sip:1[2-9][0-9]{9}@") {
 if (is_user_in("credentials","ld")) {
 strip(1);
 prefix("+1");
	 route(4);
 exit;
 } else {
 sl_send_reply("403", "No permissions for long distance");
 exit;
 };
 };

 if (uri=~"^sip:011[0-9]*@") {
 if (is_user_in("credentials","int")) {
 strip(3);
		 prefix("+");
		 route(4);
 exit;
 } else {
 sl_send_reply("403", "No perm. for internat.calls");
 };
 };

 if (!lookup("location")) {
 if (does_uri_exist()) {
 ## User not registered at this time.
 ## Use the IP Address of your e-mail server
 revert_uri();
 prefix("u");
 rewritehostport("192.168.1.171"); #Use the voicemail IP

Call Forward and Voice Mail

[180]

 route(1);
 } else {
 sl_send_reply("404", "Not Found");
	 exit;
 }	
 sl_send_reply("404", "Not Found");
 exit;
 };
 route(1);
}

route[11] {
 # from an internal domain -> outbound
 # Simply route the call outbound using DNS search
 append_hf("P-hint: inbound->outbound \r\n");
 route(1);
}

route[12] {
 # From an external domain -> inbound
 # Verify aliases, if found replace R-URI.
 lookup("aliases");
 if (!lookup("location")) {
 sl_send_reply("404", "Not Found");
 exit;
 };
 route(1);
}

route[13] {
 #From an external domain outbound
 #we are not accepting these calls
 append_hf("P-hint: outbound->inbound \r\n");
 sl_send_reply("403", "Forbidden");
 exit;
}

failure_route[1] {
 ##--
 ##-- If cancelled, exit.
 ##--
 if (t_check_status("487")) {
 exit;
 };

Chapter 8

[181]

 ##--
 ##-- If busy send to the e-mail server, prefix the "b"
 ##-- character to indicate busy.
 ##--
 if (t_check_status("486")) {
 revert_uri();
 prefix("b");
 xlog("L_ERR","Stepped into the 486 ruri=<$ru>");
 rewritehostport("192.168.1.171");
 append_branch();
 route(1);
 exit;
 };
 ##--
 ##-- If timeout (408) or unavailable temporarily (480),
 ##-- prefix the uri with the "u"character to indicate
 ##-- unanswered and send to the e-mail
 ##-- sever
 ##--
 if (t_check_status("408") || t_check_status("480")) {
 revert_uri();
 prefix("u");
 xlog("L_ERR","Stepped into the 480 ruri=<$ru>");
 rewritehostport("192.168.1.171");
 append_branch();
 route(1);
 exit;
 };
}

failure_route[2] {
	 if(!next_gw()) {
	 t_reply("503", "Service not available, no more gateways");
 exit;
	 }
	 t_on_failure("1");
	 t_relay();
}

Call Forward and Voice Mail

[182]

Inspecting the Configuration File
Our script is becoming very hard to debug. Now let's introduce the XLOG module. It
implements the XLOG() function. It is very similar to the LOG() function, but it allows
you to use pseudo-variables such as the request URI ($ru) inside the message. Below,
there is an example of the XLOG usage.

loadmodule "xlog.so"
xlog("L_ERR","Marker 480 ruri=<$ru>");

You can check the latest XLOG messages with the command:

tail /var/log/syslog

It is important to understand that on blind call forward, only the original INVITE
message will be processed; we can safely change the request URI and the call to
append_branch does not need to be invoked.

On the other hand, for call forward on busy and call forward for unanswered calls,
after the original INVITE had failed, to fork the message at this point you will have
to execute the append_branch() function.

t_on_failure("1");

The t_on_failure() function tells OpenSER to handle SIP failure conditions
(negative/unsuccessful replies) if these occur. Failure conditions in this context are
error messages prefixed by 4xx and 5xx. When you call t_on_failure, just before
calling the t_relay() function, you tell OpenSER to transfer the control to the
failure_route[1] when it receives a failure message.

failure_route[1] {
 ##--
 ##-- If cancelled, exit.
 ##--
 if (t_was_cancelled()) {
 exit;
 };

The first part of the failure_route section handles cancelled messages (487). The
script simply terminates the processing for this kind of message. Following this we
will process busy messages.

 ##--
 ##-- If busy send to the e-mail server, prefix the "b"
 ##-- character to indicate busy.
 ##--
 if (t_check_status("486")) {

Chapter 8

[183]

 revert_uri();
 prefix("b");
 xlog("L_ERR","Stepped into the 486 ruri=<$ru>");
 rewritehostport("192.168.1.171");
 append_branch();
 route(1);
 exit;
 };

If the status is equal to 486 (Busy here) the action is to revert the URI (486 is a failure
message in the inverse direction to the INVITE request), prefix the URI with "b"
(indicating to the voicemail system to play the busy message) and rewrite the host to
send the message to the voicemail. append_branch() is called to add the destination
to the request. The same logic is applied to the messages 408 and 480.

 ##-- If timeout (408) or unavailable temporarily (480),
 ##-- prefix the uri with the "u"character to indicate
 ##-- unanswered and send to the e-mail
 ##-- sever
 ##--
 if (t_check_status("408") || t_check_status("480")) {
 revert_uri();
 prefix("u");
 xlog("L_ERR","Stepped into the 480 ruri=<$ru>");
 rewritehostport("192.168.1.171");
 append_branch();
 route(1);
 exit;
 };

On the Asterisk server the file extensions.conf should have the following
instructions. The voicemail accounts should be created to match the account on
OpenSER. You can integrate both databases to avoid keeping duplicate database
entries using the tutorial found at http://www.voip-info.org/wiki/view/Realti
me+Integration+Of+Asterisk+With+OpenSER.

#extensions.conf file
[default]
exten=>_9.,1,Dial(ZAP/g1/${EXTEN})
exten=>_9.,2,hangup()
exten=>_u.,1,Voicemail(u${EXTEN})
exten=>_u.,2,hangup()
exten=>_b.,1,Voicemail(b${EXTEN})
exten=>_b.,2,hangup()

Call Forward and Voice Mail

[184]

Lab—Testing the Call Forward Feature
To create this lab, some experience with Asterisk is required for the voicemail
integration. This lab is relatively hard to implement. Some IP phones hardly ever
send the busy message, because they have more than a single line. It is important
to use all the lines before to get the "486 busy" message. There is an IP phone from
SNOM that has a wonderful busy button to indicate to the user that the phone
is busy. We will reduce the INVITE timeout to make the tests easier and less
cumbersome. On production environments remove these instructions.

modparam("tm", "fr_timer", 5)
modparam("tm", "fr_inv_timer", 20)

Step 1: Test the call forward for unanswered calls.

Call from extension 1000 to extension 1002. The call should go to the voicemail
system, with the unavailable message.

Step 2: Test the call forward on busy.

Take extension 1003 off-hook. Call extension 1003 from extension 1000. It should go
to the voicemail system with the busy message.

Summary
In this chapter, we have learned how to use AVPs to handle user preferences such as
call forward. Using failure_route allows us to implement two common situations,
call forward on busy and call forward on no answer. Finally we have learned how to
send this kind of message to an external voicemail system such as an Asterisk server.

SIP NAT Traversal
NAT, also known as Network Address Translation, was the solution found to solve
the shortage of IP addresses forecast in mid 90s. The solution consisted of using a
small range of IP addresses (in most cases a single IP addresses) on the outside port
of the firewall and a range of reserved addresses (non-registered addresses defined
in RFC1918) on the inside port of the firewall.

Unfortunately, NAT breaks SIP communication. In this chapter, we will explain
some ways to solve the NAT traversal challenge.

By the end of this chapter you will be able to:

Explain why NAT breaks SIP communication
Describe the different NAT types and their implications
Describe the main mechanisms available for NAT traversal
Implement a NAT traversal mechanism called TURN
Install and configure the MediaProxy server and its related modules

NAT is usually implemented on routers and firewalls. The NAT router maps
the internal address to an external address keeping an address mapping table.
Sometimes NAT is also referred as PAT (Port Address Translation). PAT maintains
a mapping table of "ip:port" pairs allowing a single external address to be used by
several internal addresses. You can search for more information in RFC1631.

RFC1918 defines the address allocation for private networks. The private address
space can be defined as the blocks below:

10.0.0.0 to 10.255.255.255 (10/8 prefix)
172.16.0.0 to 172.31.255.255 (172.16/12 prefix)
192.168.0.0 to 192.168.255.255 (192.168/16 prefix)

•

•

•

•

•

•

•

•

SIP NAT Traversal

[186]

NAT Types
There are four kinds of NAT:

Full Cone
Restricted Cone
Port Restricted Cone
Symmetric

Full Cone
The first type of NAT, full cone, represents a static mapping from an external
"ip:port" pair to an internal "ip:port" pair. Any external computer can connect
to it using the external "ip:port" pair. This is the case in non-stateful firewalls
implemented with the use of filters.

Restricted Cone
In the restricted cone scenario, the external "ip:port" pair is opened only when the
internal computer sends data to an outside address. However, the restricted cone
NAT blocks any incoming packets from a different address. In other words, the
internal computer has to send data to an external computer before it can send
data back.

•
•
•
•

Chapter 9

[187]

Port Restricted Cone
The port restricted cone firewall is almost identical to the restricted cone. The only
difference is that the incoming packet should come from exactly the same "ip:port"
pair as the destination of the sent packet.

Symmetric

The last type of NAT is called symmetric. It is different from the first three in that a
specific mapping is done to each external address. Only specific external addresses
are allowed to come back by the NAT mapping. It is not possible to predict the
external "ip:port" pair that will be used by the NAT device. With the other three
types of NAT, it was possible to use an external server to discover the external IP
address to use for communication. With symmetric NAT, even if you can connect to
an external server, the discovered address cannot be used for any other device except
for this server.

SIP NAT Traversal

[188]

NAT Firewall Table
Below is a summary table of all four NAT types. This table is very useful to
understand the differences between the various types of NAT.

NAT Type Need to send
data before
receiving

It is possible to
determine the ip:port
pair for returning
packets

It restricts the
incoming packets to
the destination
ip:port

Full Cone No Yes No
Restricted Cone Yes Yes Only IP
Port Restricted Cone Yes Yes Yes
Symmetric Yes No Yes

Solving the SIP NAT Traversal Challenge
The solutions for NAT traversal can be classified as near-end for solutions
implemented in the client side and far-end for solutions implemented on the server
side. The far-end solutions are easier to manage and solve NAT traversal in all four
types of NAT devices. However, these solutions impose a scalability penalty forcing
the RTP media flow into media servers. Near-end solutions are harder to manage
and can solve just the first three types of NAT devices but are far more scalable.
The ideal solution is to use near-end NAT traversal solutions to every device that
supports it (Symmetrical NAT devices don't) and use far-end NAT traversal for the
SIP devices behind a symmetric firewall. We will start using a far-end NAT solution
using the MediaProxy server.

Implementing a Far-End NAT Solution
Now let's examine a solution to implement NAT traversal on the servers without
having to make any special configuration to the clients. The UAC has to be
symmetric, in other words to send and receive on the same UDP port for both SIP
(5060) and RTP (usually, in the range of 10000 to 20000). Most user agent clients as of
today are symmetric, so it is rare to find an asymmetric client.

Chapter 9

[189]

The SIP NAT traversal problem can be classified into two parts. The SIP protocol
itself and the RTP protocol that carries the media. We will use a set of techniques
to handle the SIP and the RTP protocols. We will use RFC3581 to traverse the SIP
packets, together with some message treatment and the a Media Relay server known
as "MediaProxy" developed by Adrian Georgescu (www.ag-projects.com) and
released with a GPL license. This kind of solution is also known by the acronym
TURN (traversal of UDP over relay NAT). There is another TURN solution for
OpenSER known as RTPproxy.

RFC3581 and the force_rport() Function

The traversal of the SIP signaling can be easily solved using the fields named "rport"
and "received" as stated in RFC3581.

When a client is compatible with RFC3581, it inserts a parameter named rport in the
VIA header field of the SIP request. The Proxy will verify the existence of the field,
and will include the fields received= and rport= with the address from the interface
where it received packet. With this, it is now very easy for the proxy to forward the
responses to the SIP devices. In our case, we will force the "rport" even if the client
does not support it. RFC3581 solves the problem with dialing, but not the reception
of calls.

SIP NAT Traversal

[190]

Solving the Traversal of RTP Packets
The SIP problem was solved with these solutions. This was possible because the SIP
protocol uses a single and previously known port (UDP 5060). On the other hand
RTP uses dynamic UDP ports described in the SDP (Session Description Protocol).
When using symmetric NAT devices, a new mapping will be created to each
destination. So it is not possible to inform the UAC ahead of the correct UDP port
from which it received the RTP packet in order to send the response. The solution
is to send both RTP sessions directly to device called MediaProxy with a known IP
address and port and bridge the RTP flow in this box.

When you use MediaProxy, which is also known as a Media Relay server, it bridges
the media flows (RTP) coming from the UACs. For now it is the only way available
to traverse a symmetric NAT device. The script will change the SDP addresses to
force the RTP packets over MediaProxy using the function use_media_proxy() from
the MediaProxy module.

MediaProxy, developed by AG Projects (www.ag-projects.com) is not the only
solution for the Media Relay server component. You can also use, another
open-source solution developed by PortaOne (www.portaone.com) called RTPproxy.
RTPproxy is being actively maintained by Sippy Software Inc. (www.sippysoft.
com), where you can find the software for download. There are some devices called
Session Border Controllers (SBC) that can also be used for this purpose. Some are
very sophisticated and scalable such as the ones available from Acme Packets,
Newport Networks, and Voice System, the last one based on OpenSER (VNT-10).

Chapter 9

[191]

They can bridge thousands of calls, but not without a price tag. This price might
achieve a few hundreds of thousands of dollars. If you are planning to be a huge
service provider, I recommend you to check SBC solutions carefully.

I have chosen the MediaProxy software for this material because it is able to
distribute load and thus be scalable to thousands of users. It can be integrated with
the accounting module to produce more precise results. The only drawback is the
fact that it is written in Python and supports a limited number of simultaneous
sessions. RTPproxy may handle, in some cases, more than 900 calls in a single
computer. In several situations, RTPproxy can be a better choice. We will not
cover RTPproxy in this material, but you can find a compatible example file at
www.sermyadmin.org/openser.rtpproxy.

The INSTALL file of MediaProxy states that it can handle 80 sessions per
GHz of processing power.

Handling REGISTER Requests behind
NAT
Now that we have learned how to use force_rport() to allow the return of the
message to the right IP address and UDP port, let's see how to handle REGISTER
requests and allow the UAC to receive calls behind a NAT device. When a UAC
sends a REGISTER request we will do the following actions:

1.	 Test if the UAC is behind NAT (this can be done using client_nat_test())
and if the request is not to unregister all contacts (using * in the contact
header field).

2.	 Force the use of the rport field to reply to the right IP address and UDP port
back to the UAC.

3.	 If the UAC is behind NAT we will fix the REGISTER using fix_nated_
register() to request the insertion of the received IP address and UDP port
into the location table.

SIP NAT Traversal

[192]

4.	 Keep the NAT mappings open using the natping parameter of the
MediaProxy module after the first registration. This parameter is used to
set the interval between sending UDP packets, to keep the NAT mappings
open. Ping is used to test the connectivity using the protocol ICMP (Internet
Control Message Protocol). Natping uses the same concept of connectivity
testing, but uses a UDP packet instead. As most of you know, NAT has a
timeout, where it deletes an entry in the mapping table. Natping helps us to
avoid the NAT timeout, keeping the NAT table always refreshed.

5.	 Set a specific flag (six in our example) to be saved in the location table. This
will help later to determine if a destination is behind NAT.

Sample code to handle REGISTER requests:

if (!search("^Contact:[]**") && client_nat_test("7")) {
 setflag(6);
 fix_nated_register();
 force_rport();
};

Determining if the Client is behind NAT
There are two functions that could be used to test if a client is behind a NAT device.
One is exported by the nathelper module (part of the RTPproxy solution developed
by PortaOne) and the other exported by the mediaproxy module (part of the
MediaProxy solution developed by AG Projects). Note that the first three tests from
both modules are very similar.

Function client_nat_test()
Exported by the MEDIAPROXY module
Parameters:

"1" tests if the client has an RFC1918 address in the "Contact"
header field.
"2" tests if the client has contacted OpenSER from an address
that is different from the one in the VIA field.
"4" tests if the client has an RFC1918 address in the topmost
VIA header.

•

°

°

•

•

•

Chapter 9

[193]

Function nat_uac_test()
Exported by the module NATHELPER
Parameters:

"1" tests if the client has an RFC1918 address in the "Contact"
header field.
"2" tests if the client has contacted OpenSER from an address
that is different from the one in the VIA field.
"4" tests if the client has an RFC1918 address in the topmost
VIA header.
"8" SDP is searched for RFC1918 addresses.
"16" tests if the source port is different from the port in the
VIA header field.

You should specify the sum of the tests to be done. It will return true if at
least one of the tests succeeded. If you want to perform tests "1"," 2", and
"4" specify "7" as the function's parameter.

Handling INVITE Messages behind NAT

On REGISTER messages we had to handle just the SIP protocol. Now for the INVITE
messages we will have to handle the SIP and the RTP protocols. To accomplish this
we will have to make modifications to the SIP and the SDP headers.

•

°

°

•

•

•

•

•

SIP NAT Traversal

[194]

Besides, the contact information is wrong; it points to the private (RFC1918) address.
OpenSER should change the contact information from the private address to the
public address. This is done by the function fix_nated_contact() exported by the
nathelper module. Other messages, such as ACK, BYE, and CANCEL should have
the CONTACT header field corrected also.

When an INVITE message is sent, it will contain an SDP payload. This SDP (Session
Description Protocol) identifies the session content (audio, video, chat, named
events). The SDP payload describes several things about the UAC, such as the kinds
of session it supports, IP address, and UDP port where the other part can be found.

Example: A UAC describes the "ip:port" pair 192.168.0.1:23000 as the point where it
wants to receive the RTP media flow. At the time of the INVITE, there is no matching
"IP:port" pair in the NAT mapping table, because the RTP flow has not even started.
The SDP lines describing the IP address and UDP port are shown below:

c=IN IP4 192.168.0.1.
m=audio 23767 RTP/AVP 0 101.

To handle AUDIO sessions, OpenSER will do one thing before forwarding the
INVITE to the final user: Force RTP to pass over the Media Proxy changing the line c
to c=<ip-address-of-the-media-proxy> RTP/AVP 0 101.

Chapter 9

[195]

This option means that you need to configure a Media Relay server with a public
IP address on which both users can send the RTP traffic. Thus, you can add an
additional hop to the RTP connection. The additional hop will have implications on
the delay and possibly jitter when calling from one phone to another. However, it
is the only way to traverse symmetrical NAT available at this moment. For a VoIP
provider this is not a big issue, because most calls will go to the gateway probably
inside the provider. The Media Relay server will bridge the RTP sessions coming
from both clients. There are two Media Relay servers available, MediaProxy from AG
Projects and RTPproxy from PortaOne, both released with GPL license.

Handling the Responses
The "200 OK" message returned from the UAC will need to be manipulated too
as above. Thus a NAT handling code must be included in the section on_reply_
route[]. A flag was set (7) on the INVITE message to indicate that this transaction
is to or from a client behind a NAT device. In the reply route we will check this flag
and if it is set we will have to fix the contact, and have the RTP forced to Media Relay
server. It is important to emphasize that the "200 OK" message contains an SDP
header describing the session parameters agreed.

MediaProxy Installation and
Configuration
The MediaProxy server will allow a specialized processing of clients behind NAT.
The MediaProxy server from AG Projects (www.ag-projects.com) has the
following characteristics:

Use of the DNS SRV records to load balance the requests
Can be executed in a separate server offloading the SIP Proxy
Web monitoring

The MediaProxy server is not included with OpenSER. The OpenSER distribution
has only the mediaproxy.so module that integrates the MediaProxy server with the
OpenSER server. To work, the MediaProxy server needs a public IP address. In most
production environments, the MediaProxy server won't be run in the same CPU as
the SIP proxy.

•

•

•

SIP NAT Traversal

[196]

Installing MediaProxy
Step 1: Download the MediaProxy server from:

cd /usr/local

wget ���http://mediaproxy.ag-projects.com/mediaproxy-1.9.1.tar.gz

tar –xzvf mediaproxy-1.8.2.tar.gz

Newer versions are released very often, please check the current
version number

Step 2: Copy the init file to /etc/init.d to start MediaProxy server at boot time:

cd /usr/local/mediaproxy/boot

cp mediaproxy.debian /etc/init.d/mediaproxy

update-rc.d mediaproxy defaults 20 90

Step 3: MediaProxy is configured using the mediaproxy.ini file:

cd /usr/local/mediaproxy

cp mediaproxy.ini.sample mediaproxy.ini

vi mediaproxy.ini

Step 4: Mediaproxy is developed in Python, so we will have to install it before
running the mediaproxy.

Step 5 Edit the mediaproxy.ini file and remove the highlighted remarks:

; Configuration file for MediaProxy

[Dispatcher]
;Section for configuring the proxy dispatcher
;
;The following options are available here:
;;start Boolean value that specifies if to start the dispatcher.
; Default value: Yes
;
; socket Path to the UNIX socket where the dispatcher receives
commands
; from SER. This should match the value for mediaproxy_socket
in
; openser.cfg. Use the keyword None to disable listening on a
; local socket.
; Default value: /var/run/proxydispatcher.sock
;

Chapter 9

[197]

; listen Network address where the dispatcher receives commands from
; a remote Mediaproxy to close sessions for which media did
; timeout.
; Valid values for this are:
; - Default
; when using this keyword it will listen on 0.0.0.0:25061
; - address[:port]
; listen on the specified address and port
; address can be an IP a hostname or the keyword Any
; (in which case it will listen on 0.0.0.0). If address
; is a hostname, that should map in DNS to an IP address
; present on the machine, through an A record.
; If port is missing assume 25061.
;
; Default value: Default
;
; group Put the socket in this group and make it group writable.
; Default value: openser
;
; defaultProxy Default mediaproxy to use in case the From/To domains
; involved in the call don't define any.
; Valid values for this are:
;
; -None
; don't use any default proxies. domains without
; mediaproxy SRV records won't work
; -/path/to/unix/socket
; use a single MediaProxy server identified by the
; given UNIX socket path
; -IP_or_hostname[:port]
; use a single MediaProxy server identified by its
; network address. The network address consists of an
; IP address or a hostname and an optional port number
; separated by a double colon. If port is missing 25060
; will be assumed.
; Examples:
; 10.0.0.1 (connect to 10.0.0.1 on port 25060)
; 10.0.0.1:90 (connect to 10.0.0.1 on port 90)
; mp1.mydomain.com
; mp1.mydomain.com:7000
; -domain://domain_name
; Use all MediaProxies defined by domain_name,
; honoring their priority and weight to create a
; cluster of proxies with fallback and load balancing

SIP NAT Traversal

[198]

; capabilities.
;
; Default value: /var/run/mediaproxy.sock
;
;start = yes
;socket = /var/run/proxydispatcher.sock
;group = openser
;defaultProxy = /var/run/mediaproxy.sock

[MediaProxy]
;
; Section for configuring the MediaProxy server
;
; The following options are available here:
;
; start Boolean value that specifies if to start the RTP proxy
 server.
; Default value: Yes
;
; socket Path to the UNIX socket where MediaProxy receives commands
; from the dispatcher or SER. Use the keyword None to disable
; listening on a local socket.
; Default value: /var/run/mediaproxy.sock
;
; group Put the socket in this group and make it group writable.
; Default value: openser
;
; listen Network address where MediaProxy receives commands from
; a remote dispatcher.
; Valid values for this are:
;
; - None
; don't listen for network connections at all
; - address[:port]
; listen on the specified address and port
; address can be an IP a hostname or the keyword Any
; (in which case it will listen on 0.0.0.0). If address is
; a hostname, that should map in DNS to an IP address
; present on the machine, through an A record.
; If port is missing assume 25060.
;
; Default value: None
;
; allow List of addresses that are allowed to connect to this

Chapter 9

[199]

; MediaProxy server and send commands.
; They are specified as a comma separated list of entries,
; with each entry being specified in the CIDR network/mask
 notation
; (ex. 10.0.0.0/8)
;
; In addition simple IP addresses or hostnames are allowed, in
; which case the mask is considered to be 32.
;
; In addition to network ranges/addresses 2 keywords can be
; used for this option:
; None to specify that none is allowed to connect (not
; very useful but this is the default for security
 reasons)
; Any to specify that anyone is allowed to connect
; (dangerous!)
;
; Example: allow = 10.0.0.0/24, home-pc.mydomain.com, 1.2.3.4
;
; Default value: None
;
; proxyIP IP address to use to talk to the phones. If not specified,
; the first found will be used. However first found usually
; means first defined in /etc/hosts which may not be what you
 want.
; If you find that the address that's automatically selected
; is not the one you want, you can specify the right one
; using this option. The address must be one that's present
; on one of the host's interfaces.
;
; portRange The range of ports to use for proxying the rtp streams.
; This option is specified as minport:maxport with minport
; and maxport being even numbers in the range 1024-65536
; Default value: 60000:65000
;
; TOS Mark all forwarded RTP packets with this specific TOS
 value.
; Unless you know what TOS means, leave this option alone.
; The TOS value can be specified either as a decimal number
; or as a hex number in the 0xnn format.
; Default value: 0xb8
;
; idleTimeout Expire idle sessions after this much time.
; Default 60 seconds
;

SIP NAT Traversal

[200]

; holdTimeout Expire calls on hold after this much time.
; Default value is 3600 seconds
;
; forceClose Forcibly close a RTP session after this many seconds
;		 even if it's still active. If forceClose is 0, then a
; session is never closed no matter how long it lasts.
; Default value: 0
;
start = yes
socket = /var/run/mediaproxy.sock
group = openser
;listen = None
;allow = None
proxyIP = 10.0.0.1
;portRange = 60000:65000
;TOS = 0xb8
;idleTimeout = 60
;holdTimeout = 3600	
;forceClose = 0

[Accounting]
; one of none, radius or database
accounting = none

[Database]
user = dbuser
password = dbpass
host = dbhost
database = radius
table = radacct

[Radius]
secret = secret
server = localhost
authport = 1812
acctport = 1813
dictionaries = /etc/radiusclient-ng/dictionary, /etc/openser/radius/
dictionary, /usr/local/mediaproxy/dictionary
retries = 2
timeout = 3

The proxy dispatcher section is an advanced section that you will use when
you want to load balance MediaProxy servers. In our case we will only enable
MediaProxy with /var/run/mediaproxy.

Chapter 9

[201]

openser.cfg Analysis
Copy the file openser.nat (http://www.asteriskguide.com/openser/openser.
nat) to /etc/openser.cfg. Let's analyze the required changes to the
openser.cfg file.

Modules Loading
NatHelper and MediaProxy are responsible for handling the NAT traversal.
Some functions such as fix_nated_contact(), fix_nated_register(),
fix_nated_sdp(), and nat_uac_test() are made available by the NatHelper
module. The MediaProxy module exports the functions client_nat_test,
fix_contact(), use_media_proxy(), and end_media_session().

loadmodule "/usr/lib/openser/modules/nathelper.so"
loadmodule "/usr/lib/openser/modules/mediaproxy.so"

Modules' Parameters
The modules NatHelper and MediaProxy comes from two different solutions
(RTPproxy and MediaProxy). There are some redundancies between them. So we
will disable some functions from NatHelper such as natping. We don't need two
natping processes to be active simultaneously.

modparam("nathelper", "rtpproxy_disable", 1)
modparam("nathelper", "natping_interval", 0)

The parameter below controls the natping interval. OpenSER will send a dummy
4-byte UDP package to the phone each 30 seconds.

modparam("mediaproxy","natping_interval", 30)

OpenSER and the MediaProxy server will communicate with each other using a Unix
Socket such as the specified below:

modparam("mediaproxy","mediaproxy_socket", "/var/run/mediaproxy.sock")

The MediaProxy server needs to know if a SIP UA is asymmetric. A UAC is
asymmetric when it transmits and receives UDP packets on different ports. They
are not very common these days. The MediaProxy server has special support for SIP
and RTP asymmetric clients, but you will need to configure static mappings in the
NAT device. Check the MediaProxy module documentation for more information
regarding asymmetric clients.

SIP NAT Traversal

[202]

It is not possible to solve the NAT problem with asymmetric UACs using the Media
Relay Service.

modparam("mediaproxy","sip_asymmetrics","/etc/openser/sip-clients")
modparam("mediaproxy","rtp_asymmetrics","/etc/openser/rtp-clients")

We will use flag 6 as a NAT marker. This will allow the REGISTRAR module to store
this flag in the usrloc table. The flag will be restored by the lookup() function and
will indicate that the client is behind NAT.

modparam("registrar", "nat_flag", 6)

Register Message Processing
route[2] {
 ##--
 # Register message handling
 ##--
 sl_send_reply("100", "Trying");
 if (!search("^Contact:[]**") && client_nat_test("7")) {
 setflag(6);
 fix_nated_register();
 force_rport();
 };

Above, we will test if the UAC is behind NAT using client_nat_test(). We will
check, using a regular expression, if exists a header field CONTACT with an *
(asterisk). Some clients use CONTACT with an * to deregister any old registration
for this client. If the client is behind NAT then we will need to set flag 6, fix the
CONTACT header field to the external address, and force the rport for the client to
receive the external port. The public address of the client will be saved to the user
location table in memory (usrloc) together with flag 6 to indicate that this UAC is
behind NAT.

Invite Message Processing
 if (client_nat_test("3")) {
 setflag(7);
 force_rport();
 fix_nated_contact();
 };

Chapter 9

[203]

The INVITE messages will have a handling slightly different from the REGISTER
messages. Now we will check if the UAC is behind a NAT device. If true, we will set
flag 7 to mark this transaction; it will be helpful later when handling the responses.

Now we already know if the caller is behind a NAT device or not. However, we still
don't know if the callee is behind NAT. Using the lookup() function, we will find
the user in the user location tables. If the user found in USRLOC is behind NAT it
has been marked with the flag 6.

 if (!lookup("location")) {
 sl_send_reply("404", "User Not Found");
 exit;
 };
 route(6);
 route(1);

If the caller or the callee is behind NAT, marked with flag 6 or flag 7 respectively,
let's instruct them to use MediaProxy using the function use_media_proxy()

route[6] {
 ##--
 ## Nat traversal section
 ##--
 if (isflagset(6) || isflagset(7)) {
 use_media_proxy();
 };
}

Route[6] is the routing block responsible for activating the MediaProxy, whenever
the caller or callee is behind NAT (flags 6 or 7 respectively).

BYE and CANCEL Message Processing
##--
BYE and CANCEL message handling
##--
if (method=="BYE" || method=="CANCEL") {
 end_media_session();
};

At any time we can receive a BYE or a CANCEL message. We should assume that the
calls have used MediaProxy. Then we need to close the related MediaProxy session,
even for calls that have not used it. BYE processing occurs at the loose route section.

SIP NAT Traversal

[204]

RE-INVITE Message Handling
If we don't handle the re-invite messages, our RTP stream could drop off during the
re-invite. Now, OpenSER will embed a NAT indicator in the original Record-Route
header field of the INVITE request. This header will persist across the dialog as a
Route header and the system will be able to identify it later, when processing
re-invites of clients behind NAT.

 if(!is_method("REGISTER")){
 if(nat_uac_test("19")){
 record_route(";nat=yes");
 } else {
 record_route();
 };
 };

Now let's check the loose_route() section where the re-invites are handled. In a
re-invite message usually the route header fields are defined and the loose_route()
function will return true. To avoid other users using loose_route() to establish
calls, we will also check if the TO header field has a tag= entry indicating that this
message belongs to a established call.

Now let's verify if the client is behind NAT using the function nat_uac_test(19)
and the mark left in the previous step that the client is behind NAT using
search("^Route:.*; nat=yes"). If true, we will set flag 6 to mark the packet for
the replies, fix the CONTACT header field using fix_contact(), and use
media_proxy.

subsequent messages withing a dialog should take the
path determined by record-routing
 if (loose_route()) {
 if(!has_totag()){
 sl_send_reply("403", "Initial Loose-Routing Rejected");
 exit;
 };
 if(nat_uac_test("19") || search("^Route:.*;nat=yes")){
 �� append_hf(P-hint: Loose-Route - fixcontact,setflag6,
 mediaproxy \r\n);
 fix_contact();
 setflag(6);
 use_media_proxy();
 };
 route(1);
 };

Chapter 9

[205]

Reply Message Handling
Now we will have to handle the reply messages (200 OK, 180, 183). We will use the
onreply_route blocks. The first thing to do is to indicate to the transactions what
reply routing block you will use before calling t_relay. If the message could
not be relayed and is an INVITE or ACK message, end the media session to free
MediaProxy resources.

route[1] {
 t_on_reply("1");

 if (!t_relay()) {
 if (method=="INVITE" || method=="ACK") {
 end_media_session();
 };
 sl_reply_error();
 };
 exit;
}

Our on_reply_route[1] block will handle the replies generated by route[1]. Any
messages here are a response to a previous message sent, part of a transaction. We
will check the status of the reply using a regular expression and the flags indicating
if the caller or the callee is behind NAT. The reply is part of a transaction, so the flags
are kept until the end of the transaction. We search for the Content-type: and verify
if it is application/sdp to check if the message has an SDP payload. If the message
has an SDP payload we handle it using media_proxy.

onreply_route[1] {
 if ((isflagset(6) || isflagset(7)) && (status=~"(180)|(183)|2[0-
9][0-9]")) {
 if (search("^Content-Type:[]*application/sdp")) {
 use_media_proxy();
 };
 };
 if (client_nat_test("1")) {
 fix_nated_contact();
 };
}

SIP NAT Traversal

[206]

Routing Script
#set module path
mpath="//lib/openser/modules/"

Uncomment this if you want to use SQL database
#
$Id: openser.cfg 1676 2007-02-21 13:16:34Z bogdan_iancu $
#
simple quick-start config script
Please refer to the Core CookBook at http://www.openser.org/
dokuwiki/doku.php
for a explanation of possible statements, functions and parameters.
#

----------- global configuration parameters ------------------------

debug=3 # debug level (cmd line: -dddddddddd)
fork=yes
log_stderror=no # (cmd line: -E)
children=4
port=5060

------------------ module loading ----------------------------------
#set module path
mpath="//lib/openser/modules/"

Uncomment this if you want to use SQL database
#loadmodule "mysql.so"

loadmodule "mysql.so"
loadmodule "sl.so"
loadmodule "tm.so"
loadmodule "rr.so"
loadmodule "maxfwd.so"
loadmodule "usrloc.so"
loadmodule "registrar.so"
loadmodule "textops.so"
loadmodule "uri.so"
loadmodule "uri_db.so"
loadmodule "domain.so"
loadmodule "permissions.so"
loadmodule "group.so"
loadmodule "mi_fifo.so"
loadmodule "lcr.so"
loadmodule "avpops.so"
loadmodule "xlog.so"
loadmodule "nathelper.so"
loadmodule "mediaproxy.so"

Chapter 9

[207]

Uncomment this if you want digest authentication
mysql.so must be loaded !
loadmodule "auth.so"
loadmodule "auth_db.so"

----------------- setting module-specific parameters ---------------

modparam("mi_fifo", "fifo_name", "/tmp/openser_fifo")
modparam("registrar", "received_avp", "$avp(i:42)")
modparam("usrloc", "db_mode", 2)
modparam("usrloc", "nat_bflag", 4)
modparam("auth_db", "calculate_ha1", 1)
modparam("auth_db", "password_column", "password")
modparam("rr", "enable_full_lr", 1)
modparam("auth_db|permissions|uri_db|usrloc","db_url","mysql://
openser:openserrw@localhost/openser")
modparam("permissions", "db_mode", 1)
modparam("permissions", "trusted_table", "trusted")
modparam("avpops", "avp_url", "mysql://openser:openserrw@localhost/
openser")
modparam("avpops", "avp_table", "usr_preferences")
modparam("nathelper","rtpproxy_disable", 1)
modparam("nathelper","natping_interval", 0)
modparam("nathelper","received_avp", "$avp(i:42)")
modparam("mediaproxy","natping_interval",20)
modparam("mediaproxy","mediaproxy_socket", "/var/run/mediaproxy.sock")
modparam("mediaproxy","sip_asymmetrics","/etc/openser/sip-clients")
modparam("mediaproxy","rtp_asymmetrics","/ect/openser/rtp-clients")

------------------------- request routing logic -------------------

main routing logic

route{

 #
 # -- 1 -- Request Validation
 #
 if (!mf_process_maxfwd_header("10")) {
 sl_send_reply("483","Too Many Hops");
 exit;
 };

 if (msg:len >= 2048) {
 sl_send_reply("513", "Message too big");
 exit;
 };

 #
 # -- 2 -- Routing Preprocessing

SIP NAT Traversal

[208]

 #
 ## Record-route all except Register
 ## Mark packets with nat=yes
 ## This mark will be used to identify the request in the loose
 ## route section
 if(!is_method("REGISTER")){
 if(nat_uac_test("19")){
 record_route(";nat=yes");
 } else {
 record_route();
 };
 };

 ##Loose_route packets
 if (has_totag()) {
 #sequential request withing a dialog should
 # take the path determined by record-routing
 if (loose_route()) {
 #Check authentication of re-invites
 if(method=="INVITE" && (!allow_trusted())) {	
 if (!proxy_authorize("","subscriber")) {
 proxy_challenge("","1");
 exit;
 } else if (!check_from()) {
 sl_send_reply("403", "Forbidden, use From=ID");
 exit;
 };
 };
 if(method=="BYE" || method=="CANCEL") {
 end_media_session();
 };
 ##Detect requests in the dialog behind NA, flag with 6
 if(nat_uac_test("19") || search("^Route:.*;nat=yes")){
 append_hf("P-hint: LR|fixcontact,setflag6\r\n");
 fix_contact();
 setbflag(6);
 };
 route(1);
 } else {
 sl_send_reply("404","Not here");
 }
 exit;
 }

 #CANCEL processing
 if (is_method("CANCEL")) {
 if (t_check_trans()) {
 end_media_session();
 t_relay();
 };

Chapter 9

[209]

 exit;
 }

 t_check_trans();
 #
 # -- 3 -- Determine Request Target
 #
 if (method=="REGISTER") {
 route(2);
 } else {
 route(3);
 };
}

route[1] {
 #
 # -- 4 -- Forward request to target
 #
 # Forward statefully
 t_on_reply("1");
 t_on_failure("1");
 if (!t_relay()) {
 sl_reply_error();
 };
 exit;
}

route[2] {
 ## Register request handler
 if (is_uri_host_local()) {
 if (!www_authorize("", "subscriber")) {
 www_challenge("", "1");
 exit;
 };

 if (!check_to()) {
 sl_send_reply("403", "Forbidden");
 exit;
 };

 if(!search("^Contact:[]**") && client_nat_test("7")) {
 setbflag(6);
 fix_nated_register();
 force_rport();
 };
 save("location");
 exit;

 } else if {

SIP NAT Traversal

[210]

 sl_send_reply("403", "Forbidden");

 };
}

route[3] {
 ## Requests handler
 if (is_from_local()){
 # From an internal domain -> check the credentials and the
FROM
 if(!allow_trusted()){
 if (!proxy_authorize("","subscriber")) {
 proxy_challenge("","0");
 exit;
 } else if(!check_from()) {
	 sl_send_reply("403", "Forbidden, use From=ID");
	 exit;
	 };	
 };

 if (client_nat_test("3")) {
 append_hf("P-hint: setflag7|forcerport|fix_contact\r\n");
 setbflag(7);
 force_rport();
 fix_contact();
 };

 #unconditional call forward
 if(avp_db_load("$ru/username","$avp(s:callfwd)")) {
 avp_pushto("$ru", "$avp(s:callfwd)");
 route(1);
 exit;
 }
		
 consume_credentials();
		
 #verify aliases, if found replace R-URI.
 lookup("aliases");
				
 if (is_uri_host_local()) {
 # -- Inbound to Inbound
 route(10);
 } else {
 # -- Inbound to outbound
 route(11);
 };

 } else {

 #From an external domain ->do not check credentials

Chapter 9

[211]

 #Verify aliases, if found replace R-URI.
 lookup("aliases");
 if (is_uri_host_local()) {
 #-- Outbound to inbound
 route(12);
 } else {
 # -- Outbound to outbound
 route(13);
 };
 };
}

route[4] {
 # routing to the public network
 if (!load_gws()) {
 sl_send_reply("503", "Unable to load gateways");
	 exit;
 }
	
 if(!next_gw()){
 sl_send_reply("503", "Unable to find a gateway");
	 exit;
 }
 t_on_failure("2");
 if (!t_relay()) {
 sl_reply_error();
 };
 exit;
}

route[6] {
 #
 # -- NAT handling --
 #
 if (isbflagset(6) || isbflagset(7)) {
 append_hf("P-hint: Route[6]: mediaproxy \r\n");
 use_media_proxy();
 };
}

route[10] {
 #from an internal domain -> inbound
 #Native SIP destinations are handled using the location table
 #Gateway destinations are handled by regular expressions
 append_hf("P-hint: inbound->inbound \r\n");

 if (uri=~"^sip:[2-9][0-9]{6}@") {
 if (is_user_in("credentials","local")) {
 prefix("+1305");
 route(6);

SIP NAT Traversal

[212]

 route(4);
 exit;
 } else {
 sl_send_reply("403", "No permissions for local calls");
 exit;
 };
 };

 if (uri=~"^sip:1[2-9][0-9]{9}@") {
 if (is_user_in("credentials","ld")) {
 strip(1);
 prefix("+1");
 route(6);
 route(4);
 exit;
 } else {
 sl_send_reply("403", "No permissions for long distance");
 exit;
 };
 };

 if (uri=~"^sip:011[0-9]*@") {
 if (is_user_in("credentials","int")) {
 strip(3);
 prefix("+");
 route(6);
 route(4);
 exit;
 } else {
 sl_send_reply("403", "No permissions for
 international calls");
 };
 };

 if (!lookup("location")) {
 if (does_uri_exist()) {
 ## User not registered at this time.
 ## Use the IP Address of your e-mail server
 revert_uri();
 prefix("u");
 rewritehostport("192.168.1.171"); #Use the IP address of
your voicemail server
 route(6);
	 route(1);
 } else {
 sl_send_reply("404", "Not Found");
	 exit;
 }	
 sl_send_reply("404", "Not Found");
 exit;

Chapter 9

[213]

 };
 route(6);
 route(1);
}

route[11] {
 # from an internal domain -> outbound
 # Simply route the call outbound using DNS search
 append_hf("P-hint: inbound->outbound \r\n");
 route(1);
}

route[12] {
 # From an external domain -> inbound
 # Verify aliases, if found replace R-URI.
 lookup("aliases");
 if (!lookup("location")) {
 sl_send_reply("404", "Not Found");
 exit;
 };
 route(1);
}

route[13] {
 #From an external domain outbound
 #we are not accepting these calls
 append_hf("P-hint: outbound->inbound \r\n");
 sl_send_reply("403", "Forbidden");
 exit;
}

failure_route[1] {
 ##--
 ##-- If cancelled, exit.
 ##--
 if (t_was_cancelled()) {
 exit;
 };
 ##--
 ##-- If busy send to the e-mail server, prefix the "b"
 ##-- character to indicate busy.
 ##--
 if (t_check_status("486")) {
 revert_uri();
 prefix("b");
 rewritehostport("192.168.1.171");
 append_branch();
 route(1);
 exit;
 };

SIP NAT Traversal

[214]

 ##--
 ##-- If timeout (408) or unavailable temporarily (480),
 ##-- prefix the uri with the "u"character to indicate
 ##-- unanswered and send to the e-mail
 ##-- sever
 ##--
 if (t_check_status("408") || t_check_status("480")) {
 revert_uri();
 prefix("u");
 rewritehostport("192.168.1.171");
 append_branch();
 route(1);
 exit;
 };
}

failure_route[2] {
 if(!next_gw()) {
 t_reply("503", "Service not available, no more gateways");
 exit;
 };
 t_on_failure("2");
 t_relay();
}

onreply_route[1] {
#
#-- On-replay block routing --
#
 if (client_nat_test("1")) {
 append_hf("P-hint: Onreply-route - fixcontact \r\n");
 fix_contact();
 };

 if ((isbflagset(6) || isbflagset(7)) &&
 (status=~"(180)|(183)|2[0-9][0-9]")) {
 if (search("^Content-Type:[]*application/sdp")) {
 append_hf("P-hint: onreply_route|usemediaproxy \r\n");
 use_media_proxy();
 };
 };
 exit;
}

Chapter 9

[215]

Invite Diagram

Packet Sequence
U 8.8.3.80:62003 -> 8.8.3.48:5060
INVITE sip:1000@8.8.3.48 SIP/2.0.
Via: SIP/2.0/UDP 192.168.0.111:5060;branch=z9hG4bK31390;rport.
From: 1001 <sip:1001@8.8.3.48>;tag=2824524117.
To: 1000 <sip:1000@8.8.3.48>.
Call-ID: 38476419-134726572@192.168.0.111.
CSeq: 1 INVITE.
Contact: <sip:1001@192.168.0.111:5060>.
max-forwards: 70.
supported: 100rel.

SIP NAT Traversal

[216]

user-agent: Voip Phone 1.0.
Allow: INVITE, ACK, OPTIONS, BYE, CANCEL, REFER, NOTIFY, SUBSCRIBE,
PRACK, UPDATE.
Content-Type: application/sdp.
Content-Length: 295 .
.
v=0.
o=sdp_admin 30472538 21739392 IN IP4 192.168.0.111.
s=A conversation.
c=IN IP4 192.168.0.111.
t=0 0.
m=audio 10050 RTP/AVP 0 4 18 8 101.
a=rtpmap:0 PCMU/8000.
a=rtpmap:4 G723/8000.
a=rtpmap:18 G729/8000.
a=rtpmap:8 PCMA/8000.
a=rtpmap:101 telephone-event/8000.
a=fmtp:101 0-15.
a=sendrecv.

U 8.8.3.48:5060 -> 8.8.3.80:62003
SIP/2.0 407 Proxy Authentication Required.
Via: SIP/2.0/UDP 192.168.0.111:5060;branch=z9hG4bK31390;rport=62003;re
ceived=8.8.3.80.
From: 1001 <sip:1001@8.8.3.48>;tag=2824524117.
To: 1000 <sip:1000@8.8.3.48>;tag=50304af8547890328f8e4533797682df.822
e.
Call-ID: 38476419-134726572@192.168.0.111.
CSeq: 1 INVITE.
Proxy-Authenticate: Digest realm=8.8.3.48, nonce=4682071833d18d2020246
78d258908fef07a049b, qop=auth.
Server: OpenSer (1.1.0-notls (i386/linux)).
Content-Length: 0.
Warning: 392 8.8.3.48:5060 Noisy feedback tells: pid=3053 req_
src_ip=8.8.3.80 req_src_port=62003 in_uri=sip:1000@8.8.3.48 out_
uri=sip:1000@8.8.3.48 via_cnt==1.
.

U 8.8.3.80:62003 -> 8.8.3.48:5060
ACK sip:1000@8.8.3.48 SIP/2.0.
Via: SIP/2.0/UDP 192.168.0.111:5060;branch=z9hG4bK31390;rport.
From: 1001 <sip:1001@8.8.3.48>;tag=2824524117.
To: 1000 <sip:1000@8.8.3.48>;tag=50304af8547890328f8e4533797682df.822
e.

Chapter 9

[217]

Call-ID: 38476419-134726572@192.168.0.111.
CSeq: 1 ACK.
max-forwards: 70.
Content-Length: 0.
.

U 8.8.3.80:62003 -> 8.8.3.48:5060
INVITE sip:1000@8.8.3.48 SIP/2.0.
Via: SIP/2.0/UDP 192.168.0.111:5060;branch=z9hG4bK28696;rport.
From: 1001 <sip:1001@8.8.3.48>;tag=2824524117.
To: 1000 <sip:1000@8.8.3.48>.
Call-ID: 38476419-134726572@192.168.0.111.
CSeq: 2 INVITE.
Contact: <sip:1001@192.168.0.111:5060>.
Proxy-Authorization: Digest username=»1001, realm=8.8.3.48, nonce
=4682071833d18d202024678d258908fef07a049b, uri=sip:1000@8.8.3.48,
response=04e92e136fc8143af3c0992b01777688, algorithm=MD5,
cnonce=234abcc436e26670, qop=auth, nc=00000001.
max-forwards: 70.
supported: 100rel.
user-agent: Voip Phone 1.0.
Allow: INVITE, ACK, OPTIONS, BYE, CANCEL, REFER, NOTIFY, SUBSCRIBE,
PRACK, UPDATE.
Content-Type: application/sdp.
Content-Length: 295 .
.
v=0.
o=sdp_admin 30472538 21739392 IN IP4 192.168.0.111.
s=A conversation.
c=IN IP4 192.168.0.111.
t=0 0.
m=audio 10050 RTP/AVP 0 4 18 8 101.
a=rtpmap:0 PCMU/8000.
a=rtpmap:4 G723/8000.
a=rtpmap:18 G729/8000.
a=rtpmap:8 PCMA/8000.
a=rtpmap:101 telephone-event/8000.
a=fmtp:101 0-15.
a=sendrecv.

U 8.8.3.48:5060 -> 8.8.3.80:62003
SIP/2.0 100 trying -- your call is important to us.
Via: SIP/2.0/UDP 192.168.0.111:5060;branch=z9hG4bK28696;rport=62003;re
ceived=8.8.3.80.
From: 1001 <sip:1001@8.8.3.48>;tag=2824524117.

SIP NAT Traversal

[218]

To: 1000 <sip:1000@8.8.3.48>.
Call-ID: 38476419-134726572@192.168.0.111.
CSeq: 2 INVITE.
Server: OpenSer (1.1.0-notls (i386/linux)).
Content-Length: 0.
Warning: 392 8.8.3.48:5060 Noisy feedback tells: pid=3052 req_src_
ip=8.8.3.80 req_src_port=62003 in_uri=sip:1000@8.8.3.48 out_uri=sip:10
00@192.168.0.100:5060 via_cnt==1.
.

U 8.8.3.48:5060 -> 8.8.3.91:60166
INVITE sip:1000@192.168.0.100:5060 SIP/2.0.
Record-Route: <sip:8.8.3.48;lr=on;ftag=2824524117;nat=yes>.
Via: SIP/2.0/UDP 8.8.3.48;branch=z9hG4bK3094.efbe1187.0.
Via: SIP/2.0/UDP 192.168.0.111:5060;received=8.8.3.80;branch=z9hG4bK28
696;rport=62003.
From: 1001 <sip:1001@8.8.3.48>;tag=2824524117.
To: 1000 <sip:1000@8.8.3.48>.
Call-ID: 38476419-134726572@192.168.0.111.
CSeq: 2 INVITE.
Contact: <sip:1001@8.8.3.80:62003>.
max-forwards: 69.
supported: 100rel.
user-agent: Voip Phone 1.0.
Allow: INVITE, ACK, OPTIONS, BYE, CANCEL, REFER, NOTIFY, SUBSCRIBE,
PRACK, UPDATE.
Content-Type: application/sdp.
Content-Length: 290.
P-hint: route[3] - setflag7,forcerport,fix_contact .

P-hint: route[5] - usemediaproxy .

.
v=0.
o=sdp_admin 30472538 21739392 IN IP4 192.168.0.111.
s=A conversation.
c=IN IP4 8.8.3.48.
t=0 0.
m=audio 60012 RTP/AVP 0 4 18 8 101.
a=rtpmap:0 PCMU/8000.
a=rtpmap:4 G723/8000.
a=rtpmap:18 G729/8000.
a=rtpmap:8 PCMA/8000.
a=rtpmap:101 telephone-event/8000.
a=fmtp:101 0-15.
a=sendrecv.

Chapter 9

[219]

U 8.8.3.91:60166 -> 8.8.3.48:5060
SIP/2.0 100 Trying.
Via: SIP/2.0/UDP 8.8.3.48;branch=z9hG4bK3094.efbe1187.0.
Via: SIP/2.0/UDP 192.168.0.111:5060;received=8.8.3.80;branch=z9hG4bK28
696;rport=62003.
Record-Route: <sip:8.8.3.48;lr=on;ftag=2824524117;nat=yes>.
From: 1001 <sip:1001@8.8.3.48>;tag=2824524117.
To: 1000 <sip:1000@8.8.3.48>.
Call-ID: 38476419-134726572@192.168.0.111.
CSeq: 2 INVITE.
Content-Length: 0.
.

U 8.8.3.91:60166 -> 8.8.3.48:5060
SIP/2.0 180 Ringing.
Via: SIP/2.0/UDP 8.8.3.48;branch=z9hG4bK3094.efbe1187.0.
Via: SIP/2.0/UDP 192.168.0.111:5060;received=8.8.3.80;branch=z9hG4bK28
696;rport=62003.
Record-Route: <sip:8.8.3.48;lr=on;ftag=2824524117;nat=yes>.
From: 1001 <sip:1001@8.8.3.48>;tag=2824524117.
To: 1000 <sip:1000@8.8.3.48>;tag=914020329.
Call-ID: 38476419-134726572@192.168.0.111.
CSeq: 2 INVITE.
Contact: <sip:1000@192.168.0.100:5060>.
Content-Length: 0.
.

U 8.8.3.48:5060 -> 8.8.3.80:62003
SIP/2.0 180 Ringing.
Via: SIP/2.0/UDP 192.168.0.111:5060;received=8.8.3.80;branch=z9hG4bK28
696;rport=62003.
Record-Route: <sip:8.8.3.48;lr=on;ftag=2824524117;nat=yes>.
From: 1001 <sip:1001@8.8.3.48>;tag=2824524117.
To: 1000 <sip:1000@8.8.3.48>;tag=914020329.
Call-ID: 38476419-134726572@192.168.0.111.
CSeq: 2 INVITE.
Contact: <sip:1000@8.8.3.91:60166>.
Content-Length: 0.
P-hint: Onreply-route - fixcontact .

.

U 8.8.3.91:60166 -> 8.8.3.48:5060
SIP/2.0 200 OK.
Via: SIP/2.0/UDP 8.8.3.48;branch=z9hG4bK3094.efbe1187.0.

SIP NAT Traversal

[220]

Via: SIP/2.0/UDP 192.168.0.111:5060;received=8.8.3.80;branch=z9hG4bK28
696;rport=62003.
Record-Route: <sip:8.8.3.48;lr=on;ftag=2824524117;nat=yes>.
From: 1001 <sip:1001@8.8.3.48>;tag=2824524117.
To: 1000 <sip:1000@8.8.3.48>;tag=914020329.
Call-ID: 38476419-134726572@192.168.0.111.
CSeq: 2 INVITE.
Contact: <sip:1000@192.168.0.100:5060>.
supported: replaces.
Content-Type: application/sdp.
Content-Length: 239 .
.
v=0.
o=sdp_admin 30091196 10973278 IN IP4 192.168.0.100.
s=A conversation.
c=IN IP4 192.168.0.100.
t=0 0.
m=audio 10052 RTP/AVP 0 4 18 8.
a=rtpmap:0 PCMU/8000.
a=rtpmap:4 G723/8000.
a=rtpmap:18 G729/8000.
a=rtpmap:8 PCMA/8000.
a=sendrecv.

U 8.8.3.48:5060 -> 8.8.3.80:62003
SIP/2.0 200 OK.
Via: SIP/2.0/UDP 192.168.0.111:5060;received=8.8.3.80;branch=z9hG4bK28
696;rport=62003.
Record-Route: <sip:8.8.3.48;lr=on;ftag=2824524117;nat=yes>.
From: 1001 <sip:1001@8.8.3.48>;tag=2824524117.
To: 1000 <sip:1000@8.8.3.48>;tag=914020329.
Call-ID: 38476419-134726572@192.168.0.111.
CSeq: 2 INVITE.
Contact: <sip:1000@8.8.3.91:60166>.
supported: replaces.
Content-Type: application/sdp.
Content-Length: 234.
P-hint: Onreply-route - fixcontact .

P-hint: Onreply-route - usemediaproxy .

.
v=0.
o=sdp_admin 30091196 10973278 IN IP4 192.168.0.100.
s=A conversation.
c=IN IP4 8.8.3.48.

Chapter 9

[221]

t=0 0.
m=audio 60012 RTP/AVP 0 4 18 8.
a=rtpmap:0 PCMU/8000.
a=rtpmap:4 G723/8000.
a=rtpmap:18 G729/8000.
a=rtpmap:8 PCMA/8000.
a=sendrecv.

U 8.8.3.80:62003 -> 8.8.3.48:5060
ACK sip:1000@8.8.3.91:60166 SIP/2.0.
Via: SIP/2.0/UDP 192.168.0.111:5060;branch=z9hG4bK17145.
Route: <sip:8.8.3.48;lr=on;ftag=2824524117;nat=yes>.
From: 1001 <sip:1001@8.8.3.48>;tag=2824524117.
To: 1000 <sip:1000@8.8.3.48>;tag=914020329.
Call-ID: 38476419-134726572@192.168.0.111.
CSeq: 2 ACK.
max-forwards: 70.
user-agent: Voip Phone 1.0.
Content-Length: 0.
.

U 8.8.3.48:5060 -> 8.8.3.91:60166
ACK sip:1000@8.8.3.91:60166 SIP/2.0.
Record-Route: <sip:8.8.3.48;lr=on;ftag=2824524117;nat=yes>.
Via: SIP/2.0/UDP 8.8.3.48;branch=z9hG4bK3094.efbe1187.2.
Via: SIP/2.0/UDP 192.168.0.111:5060;received=8.8.3.80;branch=z9hG4bK1
7145.
From: 1001 <sip:1001@8.8.3.48>;tag=2824524117.
To: 1000 <sip:1000@8.8.3.48>;tag=914020329.
Call-ID: 38476419-134726572@192.168.0.111.
CSeq: 2 ACK.
max-forwards: 69.
user-agent: Voip Phone 1.0.
Content-Length: 0.
P-hint: Loose-Route - fixcontact,setflag6 .

.

U 8.8.3.91:60166 -> 8.8.3.48:5060
BYE sip:1001@8.8.3.80:62003 SIP/2.0.
Via: SIP/2.0/UDP 192.168.0.100:5060;branch=z9hG4bK29815;rport.
Route: <sip:8.8.3.48;lr=on;ftag=2824524117;nat=yes>.
From: 1000 <sip:1000@8.8.3.48>;tag=914020329.
To: 1001 <sip:1001@8.8.3.48>;tag=2824524117.
Call-ID: 38476419-134726572@192.168.0.111.
CSeq: 1 BYE.

SIP NAT Traversal

[222]

max-forwards: 70.
user-agent: Voip Phone 1.0.
Content-Length: 0.
.

U 8.8.3.48:5060 -> 8.8.3.80:62003
BYE sip:1001@8.8.3.80:62003 SIP/2.0.
Record-Route: <sip:8.8.3.48;lr=on;ftag=914020329;nat=yes>.
Via: SIP/2.0/UDP 8.8.3.48;branch=z9hG4bK6094.da62cfc5.0.
Via: SIP/2.0/UDP 192.168.0.100:5060;received=8.8.3.91;branch=z9hG4bK29
815;rport=60166.
From: 1000 <sip:1000@8.8.3.48>;tag=914020329.
To: 1001 <sip:1001@8.8.3.48>;tag=2824524117.
Call-ID: 38476419-134726572@192.168.0.111.
CSeq: 1 BYE.
max-forwards: 69.
user-agent: Voip Phone 1.0.
Content-Length: 0.
P-hint: Loose-Route - fixcontact,setflag6 .
.

U 8.8.3.80:62003 -> 8.8.3.48:5060
SIP/2.0 200 OK.
Via: SIP/2.0/UDP 8.8.3.48;branch=z9hG4bK6094.da62cfc5.0.
Via: SIP/2.0/UDP 192.168.0.100:5060;received=8.8.3.91;branch=z9hG4bK29
815;rport=60166.
Record-Route: <sip:8.8.3.48;lr=on;ftag=914020329;nat=yes>.
From: 1000 <sip:1000@8.8.3.48>;tag=914020329.
To: 1001 <sip:1001@8.8.3.48>;tag=2824524117.
Call-ID: 38476419-134726572@192.168.0.111.
CSeq: 1 BYE.
Contact: <sip:1001@192.168.0.111:5060>.
Content-Length: 0.
.

U 8.8.3.48:5060 -> 8.8.3.91:60166
SIP/2.0 200 OK.
Via: SIP/2.0/UDP 192.168.0.100:5060;received=8.8.3.91;branch=z9hG4bK29
815;rport=60166.
Record-Route: <sip:8.8.3.48;lr=on;ftag=914020329;nat=yes>.
From: 1000 <sip:1000@8.8.3.48>;tag=914020329.
To: 1001 <sip:1001@8.8.3.48>;tag=2824524117.
Call-ID: 38476419-134726572@192.168.0.111.
CSeq: 1 BYE.
Contact: <sip:1001@8.8.3.80:62003>.
Content-Length: 0.
P-hint: Onreply-route - fixcontact

Chapter 9

[223]

Lab Using MediaProxy for NAT Traversal
To test NAT traversal is not an easy task. You can test with some friends behind the
Internet calling your server on a public IP address. For a test bench the easiest setup
is to have two IP phones behind two NAT devices.

Step 1: Copy the openser.mediaproxy script to /etc/openser/openser.cfg:

cd /etc/openser

wget ���http://www.asteriskguide.com/openser/openser.mediaproxy

cp openser.mediaproxy openser.cfg

Step 2: Dowload and decompress the MediaProxy server from AG Projects to the
directory /usr/src.

cd /usr/arc

wget ���http://mediaproxy.ag-projects.com/mediaproxy-1.8.2.tar.gz

tar –xzvf mediaproxy-1.8.2.tar.gz

Please, check for newer versions.

Step 3: Install python if it is not already installed:

apt-get install python

Step 4: Edit mediaproxy.ini according to step 4 of the earlier section Installing
MediaProxy.

vi mediaproxy.ini

SIP NAT Traversal

[224]

Step 5: Start the mediaproxy process.

./mediaproxy.py

Step 6: Assemble you lab bench and register phones 1000 and 1001 behind

NAT devices.

Step 7: Use ngrep to record all the packets.

ngrep –p –q –W byline port 5060

Step 8: Test the configuration dialing from phone 1000 to phone 1001.

Step 9: Verify the RTP flows using:

/usr/local/mediaproxy/sessions.py

Implementing a Near-End NAT Solution
Simple Traversal of UDP over NAT or simply STUN is the most common method for
near-end NAT traversal. STUN is based on RFC3489 and is considered a near-end
NAT traversal solution. The biggest advantage of using STUN is that the client seems
to the proxy to be in the public Internet. You don't require any configuration on the
server for NAT traversal. The biggest disadvantage is that it does not work with
symmetric NAT devices.

The STUN protocol allows IP endpoints behind NAT devices discover their external
IP address and ports. With this information a device can inform another party at
what address it can be contacted.

STUN is relatively complex, with several messages such as mapped-address,
changed-address, source-address, response-address, and change-IP. With this
information it can discover if the client is:

In an open Internet
Behind a firewall that blocks UDP
Behind a NAT device, and if so what kind of device it is

•

•

•

Chapter 9

[225]

In the diagram below all the results in green boxes can be handled by STUN. The
other situations can only be traversed with the media relay solution (TURN).

You can implement STUN using a Linux server with Vovida software. You will need
a server and two public IP addresses for this server. The STUN server from Vovida
can be downloaded from http://www.vovida.org/.

It is possible to test STUN without installing a server; simply use a public STUN
server. A short list of public STUN servers and a lot more information about STUN
can be found at http://www.voip-info.org/wiki-STUN.

If you use STUN in the client, it won't be necessary to make any changes
in the openser.cfg script. It will work as if the client was directly
connected to the Internet.

SIP NAT Traversal

[226]

Why STUN Does Not Work with Symmetric NAT
Devices
The main characteristic of a symmetric NAT device is its creation of a new mapping
for each external device contacted. So if you contact the STUN device it will inform
you the "ip:port" pair from which it has been contacted. Unfortunately, this "ip:port"
pair informed won't be the mapping created for any other device, so this information
is useless.

In the first three kinds of NAT devices (Cone, Cone Restricted, and Port Restricted)
the mapping created to one device would be exactly the same to other devices, since
the internal "ip:port" is the same.

Comparing STUN with TURN (Media Relay Server)
STUN allows a better scalability and the endpoints can communicate directly. With
Media Rely Server, if a UAC wants to communicate with another UAC, they will
have to use your server to relay the RTP packets. This will consume your bandwidth
and in consequence your money. Worse, the payload is twice of a normal PSTN call,
because you have to relay the RTP session from two UACs. CPU resources are also
spent to bridge the packets.

STUN is great, I love STUN, but it does not solve the problem completely. It is very
hard to implement a VoIP provider without taking symmetric NAT devices into
consideration. Symmetric NAT devices are very common. You can check and even
add some devices to the NAT Survey at http://www.voip-info.org/wiki/view/
NAT+survey.

Clients behind STUN are identified as clients with a public IP address. The SIP proxy
does not need any special handling for these packets. Use STUN whenever possible
(for any NAT device except symmetric NAT). Use media relay services for users
behind a symmetric NAT device.

There are free implementations of STUN servers and clients. You can find a lot of
information about STUN at http://www.voip-info.org/wiki-STUN.

ALG—Application Layer Gateways
Another very common solution for near-end NAT traversal is ALG (application layer
gateway). Several NAT devices implement ALG. In this case the NAT device changes
the SIP and SDP headers to make the packets look as if they had been originated in
the external interface with a public address. My personal experience with ALG is not
good. Some ADSL modem routers have broken implementations of ALG and freeze

Chapter 9

[227]

when accessing a SIP provider. Another implementation changes the headers but not
the MD5 digest, giving me an authentication error (I was using the IP address of the
SIP server and not the host name; using the host name solved the problem).

It is important to be aware of NAT devices with ALG on your network. When
something is not working this is an important place to check.

ICE (Interactive Connection Establishment)
ICE is the newest protocol for NAT traversal. It combines NAT and TURN to choose
the best path available. ICE uses all the available methods of TURN or STUN to
check all possible connectivity addresses. It uses the best possible solution available
avoiding the reconfiguration of each client.

Summary
In this chapter you have been presented with the different NAT types and devices.
You have seen the implications of symmetrical NAT, the use of STUN and TURN. At
the end of this chapter you have learned how to implement the MediaProxy solution
to solve the NAT traversal problem.

As a rule of thumb, use STUN always when possible, it uses less processing power in
your voice provider. If your customer is behind a symmetrical NAT, have the option
to use Mediaproxy or RTPproxy.

MediaProxy can be load balanced, but supports a limited number of users per
box. RTPproxy, developed in C, is a lot faster and can support a lot more users in
a single box. On the other hand, it does not allow load balancing in the same way
MediaProxy does and it does not help you with accounting. MediaProxy can
detect RTP timeouts and adjust the values in the accounting server (RADIUS).
Choose wisely.

OpenSER Accounting
and Billing

In the last chapter we learned how to implement NAT traversal; now it is time to
focus on the most important thing for a VoIP provider, the revenue. The accounting
feature will allow you to determine the exact duration of each call. We will show
you two methods. The first one is using MySQL and later using a RADIUS server.
RADIUS is a de facto standard for AAA (Authentication, Authorization, and
Accounting). Duration in minutes is not enough to bill the customers. You will also
need a rating tool. This tool is able to convert minutes to whatever currency you will
use to bill your customer.

Objectives
By the end of this chapter you will be able to:

Enable accounting on a MySQL server
Enable accounting an a RADIUS server
Rate calls using the CDRTool from AG Projects

Where Are We?
We are going to work on the billing side of the solution. The proxy is working fine,
completing calls between users and gateways. However, we are not billing the calls.
Billing is a two-step process. In the first place, you have to determine the duration
of the call. This is done using RADIUS or MySQL. The next step is to determine the
price of that single call. We will use CDRTool, an open-source tool to help us in
this task.

•

•

•

OpenSER Accounting and Billing

[230]

VoIP Provider Architecture
The VoIP server uses the concept of AAA (Authentication, Authorization, and
Accounting). Until now, we have used only MySQL to authenticate and to authorize
users. We can use MySQL or RADIUs to store the accounting data. It is easier to
work with a RADIUS server because it uses an account-start packet for each INVITE
transaction and an account-stop packet for each BYE transaction, writing a single
record with the duration of the call. When you use MySQL you have to manually
correlate INVITE and BYE transactions.

Chapter 10

[231]

Accounting Configuration
Billing is an exceptional means of verifying the messages. It gives the status of the
ended transactions. The billing process also gives the results of the INVITE and
BYE transactions. To correlate the INVITE and BYE transactions is a function of the
billing software. The best place to bill the calls is on the gateways, because a call can
be left open after an INVITE without the correlated BYE. Another good reason is
because a SIP proxy stays in the middle of the SIP signaling with very little control
over the media. A proxy can be bypassed by the signaling after the call start, so
the accounting info will be incomplete. In the gateways it is possible to set session
timeouts to terminate unfinished SIP dialogs.

To enable the accounting feature we will use the ACC module. It will account to a
MySQL database. We are going to use phpMyAdmin to check the database records.
We need to set a flag in the transactions that we want to be accounted. The ACC
module for version 1.2 is a bit different than the existing one in OpenSER 1.1. Now,
the module logs by default just the following data:

ID Method from_tag to_tag callid sip_code sip_reason Time
1 INVITE 5d09d45a 27095f70 ZTY5ND. 200 OK 2008-04-07

09:13:21
2 BYE 5d09d45a 27095f70 ZTY5ND. 200 OK 2008-04-07

09:13:30

So, to have something identifying caller and callee, you need to add some extra data.

LAB—Accounting using MySQL
To avoid a huge and complex script, let's implement the accounting over the script
developed in Chapter 7 (about connecting to PSTN Gateways).

Step 1: Add the following fields in the ACC table:

mysql -u root

USE OPENSER;
ALTER TABLE 'acc' ADD 'from_uri' VARCHAR(64) NOT NULL ;
ALTER TABLE 'acc' ADD 'to_uri' VARCHAR(64) NOT NULL ;

Step 2: Use the script below:

#
$Id: openser.cfg 1676 2007-02-21 13:16:34Z bogdan_iancu $
#
simple quick-start config script

OpenSER Accounting and Billing

[232]

Please refer to the Core CookBook at http://www.openser.org/
dokuwiki/doku.php
for a explanation of possible statements, functions and parameters.
#

----------- global configuration parameters ------------------------

debug=3 # debug level (cmd line: -dddddddddd)
fork=yes
log_stderror=no # (cmd line: -E)
children=4
port=5060

------------------ module loading ----------------------------------
#set module path
mpath="//lib/openser/modules/"

Uncomment this if you want to use SQL database
#loadmodule "mysql.so"

loadmodule "mysql.so"
loadmodule "sl.so"
loadmodule "tm.so"
loadmodule "rr.so"
loadmodule "maxfwd.so"
loadmodule "usrloc.so"
loadmodule "registrar.so"
loadmodule "textops.so"
loadmodule "uri.so"
loadmodule "uri_db.so"
loadmodule "domain.so"
loadmodule "permissions.so"
loadmodule "group.so"
loadmodule "acc.so"

Uncomment this if you want digest authentication
mysql.so must be loaded !
loadmodule "auth.so"
loadmodule "auth_db.so"

----------------- setting module-specific parameters ---------------

modparam("usrloc", "db_mode", 2)
modparam("auth_db", "calculate_ha1", yes)

Chapter 10

[233]

modparam("auth_db", "password_column", "password")
modparam("rr", "enable_full_lr", 1)
modparam("auth_db|permissions|uri_db|usrloc","db_url","mysql://
openser:openserrw@localhost/openser")
modparam("permissions", "db_mode", 1)
modparam("permissions", "trusted_table", "trusted")
modparam("acc", "db_flag", 2)

modparam("acc", "db_missed_flag", 3)

modparam("acc", "db_url", "mysql://openser:openserrw@localhost/
openser")

modparam("acc", "db_extra", "from_uri=$fu; to_uri=$tu")

------------------------- request routing logic -------------------

main routing logic

route{

 #
 # -- 1 -- Request Validation
 #
 if (!mf_process_maxfwd_header("10")) {
 sl_send_reply("483","Too Many Hops");
 exit;
 };

 if (msg:len >= 2048) {
 sl_send_reply("513", "Message too big");
 exit;
 };

 #
 # -- 2 -- Routing Preprocessing
 #
 ## Record-route all except Register
 if (!method=="REGISTER") record_route();

 ##Loose_route packets
 if (has_totag()) {
 #sequential request withing a dialog should
 # take the path determined by record-routing
 if (loose_route()) {
 if(method=="BYE") {

OpenSER Accounting and Billing

[234]

 #Account BYE transactions

 setflag(2);

 };

 #Check authentication of re-invites
 if(method=="INVITE" && (!allow_trusted())) {	
 if (!proxy_authorize("","subscriber")) {
 proxy_challenge("","1");
 exit;
 } else if (!check_from()) {
 sl_send_reply("403", "Forbidden, use From=ID");
 exit;
 };
 };
 route(1);
 } else {
 sl_send_reply("404","Not here");
 }
 exit;
 }

 #CANCEL processing
 if (is_method("CANCEL")) {
 if (t_check_trans()) t_relay();
 exit;
 };

 t_check_trans();

 #
 # -- 3 -- Determine Request Target
 #
 if (method=="REGISTER") {
 route(2);
 } else {
 route(3);
 };
}

route[1] {
 #
 # -- 4 -- Forward request to target
 #
 ## Forward statefully
 if (!t_relay()) {

Chapter 10

[235]

 sl_reply_error();
 };
 exit;
}

route[2] {
 ## Register request handler
 if (is_uri_host_local()) {
 if (!www_authorize("", "subscriber")) {
 www_challenge("", "1");
 exit;
 };

 if (!check_to()) {
 sl_send_reply("403", "Forbidden");
 exit;
 };

 save("location");
 exit;
 } else if {
 ���������������������������������� sl_send_reply("401", "Forbidden");
 ��};
}

route[3] {
 ## Non-Register request handler
 if (method=="INVITE") {

 # Account INVITE packets

 setflag(2);

 # Account Missed calls

 setflag(3);

 };

 if (is_from_local()){
 # From an internal domain -> check the credentials and the FROM
 if(!allow_trusted()){
 if (!proxy_authorize("","subscriber")) {
 proxy_challenge("","1");
 exit;
 } else if (!check_from()) {
 sl_send_reply("403", "Forbidden, use From=ID");
 exit;
 };
 } else {

OpenSER Accounting and Billing

[236]

 log("Request bypassed the auth.using allow_trusted");
 ��};

 consume_credentials();

 #Verify aliases, if found replace R-URI.
 lookup("aliases");

 if (is_uri_host_local()) {
 # -- Inbound to Inbound
 route(10);
 } else {
 # -- Inbound to outbound
 route(11);
 };

 } else {
 #From an external domain ->do not check credentials

 #Verify aliases, if found replace R-URI.
 lookup("aliases");
 if (is_uri_host_local()) {
 #-- Outbound to inbound
 route(12);
 } else {
 ������������������������� # -- Outbound to outbound
 route(13);
 };
 };
}

route[4] {
 # routing to the public network
 rewritehostport("10.125.123.177");
 route(1);
}

route[10] {
 #from an internal domain -> inbound
 #Native SIP destinations are handled using the location table
 #Gateway destinations are handled by regular expressions
 append_hf("P-hint: inbound->inbound \r\n");

 if (uri=~"^sip:[2-9][0-9]{6}@") {

Chapter 10

[237]

 if (is_user_in("credentials","local")) {
 prefix("+1305");
 route(4);
 exit;
 } else {
 sl_send_reply("403", "No permissions for local calls");
 exit;
 };
 };

 if (uri=~"^sip:[2-9][1-9]{9}@") {
 if (is_user_in("credentials","ld")) {
 prefix("+1");
 route(4);
 exit;
 } else {
 sl_send_reply("403", "No permissions for
 long distance");
 exit;
 };
 };

 if (uri=~"^sip:011[0-9]*@") {
 if (is_user_in("credentials","int")) {
 strip(3);
 prefix("+");
 route(4);
 exit;
 } else {
 sl_send_reply("403", "No permissions for
 international calls");
 };
 };

 if (!lookup("location")) {
 sl_send_reply("404", "Not Found");
 �����exit;
 };
 route(1);
}

route[11] {
 # from an internal domain -> outbound
 # Simply route the call outbound using DNS search

OpenSER Accounting and Billing

[238]

 append_hf("P-hint: inbound->outbound \r\n");
 route(1);
}

route[12] {
 # From an external domain -> inbound
 # Verify aliases, if found replace R-URI.
 lookup("aliases");
 if (!lookup("location")) {
 sl_send_reply("404", "Not Found");
 �����exit;
 };
 route(1);
}

route[13] {
 #From an external domain outbound
 #we are not accepting these calls
 append_hf("P-hint: outbound->inbound \r\n");
 sl_send_reply("403", "Forbidden");
 exit;
}

Step 3: Make a call between two available SIP devices.

Step 4: Verify the accounting table using the MySQL command-line interface:

#mysql –u root

mysql>use openser
mysql>select * from acc;

openser.cfg Analysis
The accounting feature is very simple to implement. The first step is to load the
accounting module.

loadmodule "acc.so"

The second step is the configuration of the module's parameters. The first parameter,
db_flag, tells OpenSER to account transactions marked with the flag number 2. The
parameter db_missed_flag tells OpenSER to account missed calls. The parameter
db_extra allows you to include new data to your database. Use the name of the
field (from_uri) you have previously created in the database and a value that can be
taken from pseudo-variables, AVPs or headers.

Chapter 10

[239]

modparam("acc", "db_flag", 2)
modparam("acc", "db_missed_flag", 3)
modparam("acc", "db_url",
 "mysql://openser:openserrw@localhost/openser")
modparam("acc", "db_extra", "from_uri=$fu; to_uri=$tu")

Let's modify our script to account INVITE and BYE transactions for a while.

if (loose_route()) {
		 if(method=="BYE") {
			 #Account BYE transactions
			 setflag(2);
		 };

BYEs are being flagged in the loose_route section, because we are using
record-route. INVITEs are being flagged for accouting in the initial requests section.
You don't need to flag re-INVITEs.

if (method=="INVITE") {
 	 # Account INVITE packets
		 setflag(2);
		 # Account Missed calls
		 setflag(3);
	 };

You can check the accounting tables using the phpMyAdmin web utility. Look for
the ACC table in the OpenSER database and select Browse.

Accounting using RADIUS
RADIUS (Remote Authentication Dial-in User Service) is a kind of AAA
(Authentication, Authorization, and Accounting) service. It is a de facto standard
for Internet Access Providers. Over the last few years RADIUS has been becoming
an important security protocol used in several network applications such as NAC
(Network Access Control) and VoIP accounting. You can implement a RADIUS
server using the open-source package called FreeRADIUS. There are other RADIUS
packages, licensed open-source and commercial. A good list of RADIUS servers can
be found at:

http://en.wikipedia.org/wiki/List_of_RADIUS_Servers.

RADIUS was defined primarily in two RFCs:

RFC2865—Authentication
RFC2866—Accounting

•

•

OpenSER Accounting and Billing

[240]

In this chapter we will use RADIUS only for accounting. MySQL will be held in the
authentication function. Let's install FreeRADIUS according to the instructions for
our rating tool (CDRTool).

Installation of FreeRADIUS and CDRTool
The installation of the FreeRADIUS server is unquestionably a challenge. Several
steps have to be strictly followed to have a working configuration. To do this we will
divide the installation in five steps:

1.	 Package and dependencies installation
2.	 Database configuration
3.	 FreeRADIUS configuration
4.	 Radiusclient-ng installation
5.	 OpenSER configuration

Packages and Dependencies
For FreeRADIUS, freeradius-mysql and CDRTool install the packages below:

apt-get install freeradius freeradius-mysql

Create and Configure the Database for the
Radius server
Step 1: Create the database for the FreeRADIUS server.

mysqladmin -u root –p create radius

Type the root password whenever required.

Step 2: Create the tables below to support the RADIUS server.

cd /usr/share/doc/freeradius/examples

gunzip mysql.sql.gz

mysql -u root radius <mysql.sql

Chapter 10

[241]

Step 3: Apply the RADIUS and radacct patches that comes together with CDRTool.
The FREERADIUS patch fixes a problem with accounting type 15. The other patch,
radacct-patch, modifies the insert and update queries to send data to the RADIUS
SQL database.

Download the FREERADIUS patch:

wget http://download.dns-hosting.info/CDRTool/freeradius/freeradius.patch

Apply the patch.

apt-get build-dep freeradius

apt-get source freeradius

apt-get install devscripts

cd freeradius-1.1.3

patch -p1 -s < ../freeradius.patch

debuild

cd ../

dpkg -i freeradius*.deb

Step 4: Install CDRTool to use its supporting files for RADIUS:

wget http://download.dns-hosting.info/CDRTool/cdrtool_6.4.1_all.deb

dpkg –i cdrtool_6.4.1_all.deb

apt-get –f install

Please, check the current version. It often changes.

Step 5: Apply the RADIUS accounting patch that comes together with CDRTool.

cd /var/www/CDRTool/setup/radius/OpenSER

./radacct-patch.sh

Step 6: Edit the database connection parameters in the SQL.CONF file.

vi /var/www/CDRTool/setup/radius/sql.conf

#
Configuration for the Freeradius SQL module using MySQL and a
central radacct table. To use monthly tables with auto-rotation
#. see radius_accounting.conf and radius_accounting.proc
#
sql {
 driver = "rlm_sql_mysql"

OpenSER Accounting and Billing

[242]

 server = "127.0.0.1"

 login = "root"

 password = ""

 radius_db = "radius"

 acct_table = "radacct"
 sqltrace = no
 sqltracefile = ${logdir}/sqltrace-%Y%m%d.log
 num_sql_socks = 25
 connect_failure_retry_delay = 60

On a production environment don't use root without a password.

Step 7: Copy the file sql.conf to the directory /etc/freeradius/sql.conf:

cp sql.conf /etc/freeradius/sql.conf

Configuration of the FreeRADIUS Server
Now we are going to configure the FreeRADIUS servers and clients. OpenSER server
is the client of the RADIUS server. It uses the library libradiusclient-ng to connect to
the RADIUS server.

Step 1: Add OpenSER as a FreeRADIUS client.

In the RADIUS protocol architecture you have to define the devices that will send the
authentication and accounting packets to the RADIUS server. Usually these devices
are remote access gateways, 802.1X switches, and access points. In our case the
RADIUS client is the SIP proxy server that will be sending the account requests.

Edit the clients.conf file in the FreeRADIUS configuration directory.

vi /etc/freeradius/clients.conf

Example:

client 127.0.0.1 {
 secret=openser
 shortname=OpenSER
 nastype=other
}

Step 2: Enable the MySQL accounting in FreeRADIUS. Edit the radiusd.conf file
and uncomment or add the required lines. (This is the place where you often
will make a mistake. The accounting section is deep in the file. I have copied a
radiusd.conf to the same place as the book scripts to help you.)

Chapter 10

[243]

Accounting {
	 acct_unique
	 detail
	 sql
	 unix
	 radutmp
	 }

Step 3: Copy the OpenSER dictionary to the /etc/freeradius.

cp /var/www/CDRTool/setup/radius/OpenSER/dictionary.ser /etc/freeradius

Step 4: Include the OpenSER dictionary in the RADIUS server configuration file.

cd /etc/freeradius

vi dictionary

The filename given here should be an absolute path.
#
$INCLUDE /usr/share/freeradius/dictionary
$INCLUDE /etc/freeradius/dictionary.ser

Be sure to include in the correct order.

Step 5: Restart the freeradius server.

/etc/init.d/freeradius restart

Configure the RADIUS Client (radiusclient-ng)
Step 1: Copy the file dictionary.radius to the RADIUS client
configuration directory.

#cp /etc/openser/dictionary.radius /etc/radiusclient-ng/

Step 2: Edit the file /etc/radiusclient-ng/dictionary.

vi /etc/radiusclient-ng/dictionary

Add the line below as the last line of the file:

$INCLUDE /etc/freeradius/dictionary.ser

OpenSER Accounting and Billing

[244]

Step 3: Edit the file /etc/radiusclient-ng/servers:

Configure the RADIUS server with the related key.

#Server Name or Client/Server pair Key
#---------------- ---------------
#portmaster.elemental.net hardlyasecret
#portmaster2.elemental.net donttellanyone
127.0.0.1 openser

Step 4: Edit the file /etc/radiusclient-ng/radiusclient.conf:

Add the IP address of your RADIUS server.

RADIUS server to use for accouting requests. All that I
said for authserver applies, too.
Acctserver 127.0.0.1

Configure OpenSER
The accounting module has support for RADIUS, but, by default it is not enabled. So
let's enable the RADIUS support for OpenSER. We will have to recompile OpenSER
to do this.

Step 1: edit the file Makefile of the module acc.

vi /usr/src/openser-1.2.2-tls/modules/acc/Makefile

Remove the comments (#) from the highlighted lines.

uncomment the next two lines if you wish to enable RADIUS accounting
DEFS+=-DRAD_ACC -I$(LOCALBASE)/include

LIBS=-L$(LOCALBASE)/lib $(RADIUS_LIB)

Step 2: Recompile OpenSER:

cd /usr/src/openser-1.2.2-tls

make prefix=/ clean

make prefix=/ all

make prefix=/install

Step 3: Add the following entries in the openser.cfg file.

modparam("acc", "radius_config", "/etc/radiusclient-ng/
radiusclient.conf")
modparam("acc", "radius_flag", 2)
modparam("acc", "radius_missed_flag", 3)
modparam("acc", "radius_extra", "User-Name=$Au; \

Chapter 10

[245]

 Calling-Station-Id=$from; \
 Called-Station-Id=$to; \
 Sip-Translated-Request-URI=$ruri; \
 Sip-RPid=$avp(s:rpid); \
 Source-IP=$si; \
 Source-Port=$sp; \
 Canonical-URI=$avp(s:can_uri); \
 Billing-Party=$avp(s:billing_party); \
 Divert-Reason=$avp(s:divert_reason); \
 X-RTP-Stat=$hdr(X-RTP-Stat); \
 Contact=$hdr(contact); \
 Event=$hdr(event); \
 SIP-Proxy-IP=$avp(s:sip_proxy_ip); \
 ENUM-TLD=$avp(s:enum_tld)")

Step 4: Restart the OpenSER Server.

Test the Configuration after Making a Call
Check the RADIUS accounting tables (radacct table in the RADIUS database). You
can use the phpMyAdmin utility to do it. The SIP accounting is composed of two
records, start and stop. The start event is triggered by an INVITE request and the
stop event by the BYE request. In the initial event the attribute Calling-Station-Id
identifies the caller and the Called-Station-Id the callee. The duration of the call
is established by the difference between the timestamps of these two events. You can
also check the RADIUS log files at /var/log/freeradius/radacct.

Example:

Sun Mar 12 17:29:21 2006
	 Acct-Status-Type = Start
	 Service-Type = Sip-Session
	 Sip-Response-Code = 200
	 Sip-Method = INVITE
	 User-Name = "101@openser.org"
	 Calling-Station-Id = "sip:101@openser.org"
	 Called-Station-Id = "sip:102@openser.org"
	 Sip-Translated-Request-URI = "sip:102@192.168.0.12:5066"
	 Acct-Session-Id = "1dbe198c82543fa2@192.168.0.11"
	 Sip-To-Tag = "00D0E90101B8_T9513"
	 Sip-From-Tag = "111aa0fda452c726"
	 Sip-Cseq = "4435"

OpenSER Accounting and Billing

[246]

	 Sip-Src-IP = "192.168.0.11"
	 Sip-Src-Port = "5068"
	 NAS-IP-Address = 127.0.0.1
	 NAS-Port = 5060
	 Acct-Delay-Time = 0
	 Client-IP-Address = 10.10.10.10
	 Acct-Unique-Session-Id = "37fb00358437ff4d"
	 Timestamp = 1142177361
Sun Mar 12 17:29:28 2006
	 Acct-Status-Type = Stop
	 Service-Type = Sip-Session
	 Sip-Response-Code = 200
	 Sip-Method = BYE
	 User-Name = "102@openser.org"
	 Calling-Station-Id = "sip:102@openser.org"
	 Called-Station-Id = "sip:101@openser.org"
	 Sip-Translated-Request-URI = "sip:101@192.168.0.11:5068"
	 Acct-Session-Id = "1dbe198c82543fa2@192.168.0.11"
	 Sip-To-Tag = "111aa0fda452c726"
	 Sip-From-Tag = "00D0E90101B8_T9513"
	 Sip-Cseq = "3305"
	 Sip-Src-IP = "192.168.0.12"
	 Sip-Src-Port = "5066"
	 NAS-IP-Address = 127.0.0.1
	 NAS-Port = 5060
	 Acct-Delay-Time = 0
	 Client-IP-Address = 10.10.10.10
	 Acct-Unique-Session-Id = "597f048f3aa62ca0"
	 Timestamp = 1142177368

Using CDRTool for Rating
One of the most valuable aspects of a VoIP provider is billing. Let's examine an
open-source tool called CDRTool to do this. CDRTool has been developed by AG
Project (www.ag-projects.com) and is licensed according to GPL.

Chapter 10

[247]

CDRTool is a web application able to rate calls accounted in the FreeRADIUS tables.
It is able to rate calls based in its internal tables. Beyond rating calls, the system
is able to trace calls using the siptrace feature of OpenSER and apply anti-fraud
mechanisms based on quotas. The component rating engine is a daemon that can
receive TCP requests, making possible the implementation of a pre-paid mechanism.

In this material we will focus just on rating calls. Tracing calls will be seen in
Chapter 11.

MediaProxy can be used in conjunction with CDRTool to provide 100% accurate
accounting, regardless of the availability of BYE messages.

Having access to information from both the SIP signaling and the RTP media
(MediaProxy), CDRTool can be used to implement several billing modes including
traffic variables, or a combination of destination, application type, and duration.

LAB—CDRTool Installation
The CDRTool installation is very difficult. To install it, strictly follow the
instructions below:

Step 1: The installation of the CDRTool package should be done as explained in the
section Installation of FreeRADIUS and CDRTool.

Step 2: Create the CDRTool database.

Go to the /var/www/CDRTool/setup/mysql directory:

cd /var/www/CDRtool/setup/mysql

Edit the file create_users.mysql:

vi create_users.mysql

GRANT ALL ON cdrtool.* TO cdradmin@'localhost' IDENTIFIED by
'password';
GRANT ALL ON cdrtool.* TO cdradmin@'192.168.1.%' IDENTIFIED by
'password';
GRANT ALL ON cdrtool.* TO locker@'localhost' IDENTIFIED by 'password';
GRANT ALL ON cdrtool.* TO locker@'192.168.1.%' IDENTIFIED by
'password';

Execute the installation script. This step will create the CDRTool database. It also
creates the initial account for login use (admin user with admin password).

./setup_mysql.sh "" localhost

OpenSER Accounting and Billing

[248]

Press Enter when prompted for the password or the root password, if you
have set one.

Step 3: Create the configuration file global.inc.

cd /var/www/CDRTool

cp setup/global.inc.new.installation global.inc

Edit the file global.inc and configure the variable to match your system. For each
different data source you should create a new instance.

<?

#
1. Change all hostnames and passwords according to the installation
2. Copy this file to /var/www/CDRTool/global.inc
#

###
System and web paths

$CDRTool['tld'] = "/CDRTool";
$CDRTool['Path'] = "/var/www/CDRTool";
$_PHPLIB['libdir'] = $CDRTool['Path']. "/phplib/";
include($_PHPLIB["libdir"] . "prepend.php3");
$global_local = $CDRTool['Path']."/global.inc.local";

###
PHP Error reporting

$errorReporting = (E_ALL & ~E_NOTICE);
$errorReporting = 1; // comment this out to enable PHP warnings
error_reporting($errorReporting);

###
Service provider information

$CDRTool['provider']['name'] = "VOFFICETel";
$CDRTool['provider']['service'] = "SIP service";
$CDRTool['provider']['timezone'] = "Sao Paulo";
$CDRTool['provider']['fromEmail'] = "flavio@voffice.com.
br";
$CDRTool['provider']['toEmail'] = "support@voffice.com.
br";

Chapter 10

[249]

$CDRTool['provider']['sampleLoginSubscriber'] = "number@voffice.com.
br";
$CDRTool['provider']['sampleLoginDomain'] = "voffice.com.br";

###
Where the rating engine listens for network requests:

$RatingEngine=array("socketIP" => "192.168.1.170",
 "socketPort" => "9024",
 "CDRS_class" => "ser_radius");

$memcache_server = "127.0.0.1:11212";

###
Normalize engine settings

$CDRTool['normalize']['defaultCountryCode'] = "55";
$CDRTool['normalize']['CountryNumberLength'] = "10";

###
Anti-fraud settings
create group quota in SER and deny calls to users in this group
$UserQuota["default"]["traffic"] = 5000; // MBytes
$UserQuota["default"]["cost"] = 1000; // Euro

###
CDRTool datasources

class DB_CDRTool extends DB_Sql {
 var $Host = "localhost";
 var $Database = "cdrtool";
 var $User = "cdradmin";
 var $Password = "senha";
 var $Halt_On_Error ="no";
}

class DB_Locker extends DB_Sql {
 var $Host = "localhost";
 var $Database = "cdrtool";
 var $User = "locker";
 var $Password = "senha";
 var $Halt_On_Error ="no";
}

OpenSER Accounting and Billing

[250]

class DB_radius extends DB_Sql {
 var $Host = "localhost";
 var $Database = "radius";
 var $User = "radius";
 var $Password = "senha";
 var $Halt_On_Error ="no";
}

class DB_ser extends DB_Sql {
 var $Host = "localhost";
 var $Database = "openser";
 var $User = "openser";
 var $Password = "openserrw";
 var $Halt_On_Error ="no";
}

class DomainAuthLocal extends DomainAuth { // defined in
 phplib/local.inc
}

class PageLayoutLocal extends PageLayout { // defined in
 phplib/local.inc
}

$DATASOURCES=array(
"unknown"=>array(
 "class" => "CDRS_unknown" // leave it here
),
"ser_radius"=>array(
 "name" => "OpenSER",
 "class" => "CDRS_ser_radius",
 "table" => "radacct",
 "db_class" => "DB_radius",
 "db_class_readonly" => "DB_radius",
 "db_class_siponline" => "DB_ser",
 "rateField" => "Rate",
 "rating" => "1",
 "priceField" => "Price",
 "normalize0SecCalls" => "1",
 "DestinationIdField" => "DestinationId",
 "normalizedField" => "Normalized",
 "BillingPartyIdField"=> "UserName",

Chapter 10

[251]

 "AccountsDBClass" => "DB_ser",
 "intAccessCode" => "00",
 "sipTraceDataSource" => "sip_trace",
 "traceOutURL" => array(
 "sipvm.example.com"=>"asterisk",
 "pstn.example.com"=>"cisco"
),
 "UserQuotaClass" => "SERQuota",
 "UserQuotaTable" => "user_quota",
 "UserQuotaVerbose" => "",
 "UserQuotaNotify" => "0",
 "MinPstnNumLen" => "9",
 "EnableSIPOnline" => "0",
 "EnableNetworkRating"=> "1",
 "domainTranslation" => array(
 "gw02.example.com" => "pstn.example.com"
),
 "EnableSIPOnline" => 1,
 "RotateTables" => "Ym",
 "RotateThisMonth" => 0,
 "purgeCDRsAfter" => 120 // how many days to
 keep the CDRs
),
"asterisk_vm" =>array("name" => "Voicemail server",
 "class" => "CDRS_asterisk",
 "table" => "asterisk_cdr",
 "db_class" => "DB_radius",
 "rateField" => "Rate",
 "rating" => "1",
 "priceField" => "Price",
 "DestinationIdField" => "DestinationId",
 "normalizedField" => "Normalized",
 "normalize0SecCalls" => "1",
 "contexts" => array(
 "SIP"=>array("WEBName"=>"OpenSER"),
),
 "traceInURL" => array(
 "SIP"=>"ser_radius"
),
 "traceOutURL" => array(),
 "purgeCDRsAfter" => 180 // how many days to
 keep the CDRs
),
"sip_trace" =>array(

OpenSER Accounting and Billing

[252]

 "name" => "SIP trace",
 "db_class" => "DB_ser",
 "table" => "sip_trace",
 "purgeRecordsAfter" => "7"
)
);

// load CDRTool libraries
$CDRToolModules=array("ser","asterisk","rating");

if ($REMOTE_ADDR=="192.168.1.209") {
 //$verbose=1;
} else {
 // prevent set of verbose via post/get
 unset($verbose);
}
?>

Step 4: Enable the rating server.

Edit the file /etc/default/cdrtool and configure:

RUN_ratingEngine=yes

To start the rating server:

/etc/init.d/cdrtool restart

Step 5: Configure Apache to support CDRTool

In the end of the /etc/apache2/apache2.conf, add the following statements:

DirectoryIndex index.phtml index.php index.html index.htm
AddType application/x-httpd-php .php
AddType application/x-httpd-php .phtml

Restart Apache:

/etc/init.d/apache2 restart

Step 6: Access your CDRTool using your browser at the following address:

http://ip_address_of_your_server/CDRTool or

http://name_of_your_server/CDRTool

Chapter 10

[253]

Step 7: Log in using the user admin password admin. Change the password as soon
as possible to avoid security problems.

Installation parameters frequently change. Please check the INSTALL file
of CDRTOOL. It can be found as INSTALL.txt in the doc directory of
CDRTool (/var/www/CDRTool/doc/INSTALL.txt).

LAB—Using CDRTool
Change your script to the final script including NAT traversal and RADIUS Billing.

#
$Id: openser.cfg 1676 2007-02-21 13:16:34Z bogdan_iancu $
#
simple quick-start config script
Please refer to the Core CookBook at http://www.openser.org/
dokuwiki/doku.php
for a explanation of possible statements, functions and parameters.
#

----------- global configuration parameters ------------------------

debug=3 # debug level (cmd line: -dddddddddd)
fork=yes
log_stderror=no # (cmd line: -E)
children=4
port=5060

------------------ module loading ----------------------------------
#set module path
mpath="//lib/openser/modules/"

Uncomment this if you want to use SQL database
#loadmodule "mysql.so"

loadmodule "mysql.so"
loadmodule "sl.so"
loadmodule "tm.so"
loadmodule "rr.so"
loadmodule "maxfwd.so"
loadmodule "usrloc.so"
loadmodule "registrar.so"
loadmodule "textops.so"

OpenSER Accounting and Billing

[254]

loadmodule "uri.so"
loadmodule "uri_db.so"
loadmodule "domain.so"
loadmodule "permissions.so"
loadmodule "group.so"
loadmodule "mi_fifo.so"
loadmodule "lcr.so"
loadmodule "avpops.so"
loadmodule "xlog.so"
loadmodule "nathelper.so"
loadmodule "mediaproxy.so"
loadmodule "acc.so"

Uncomment this if you want digest authentication
mysql.so must be loaded !
loadmodule "auth.so"
loadmodule "auth_db.so"

----------------- setting module-specific parameters ---------------

modparam("mi_fifo", "fifo_name", "/tmp/openser_fifo")
modparam("registrar", "received_avp", "$avp(i:42)")
modparam("usrloc", "db_mode", 2)
modparam("usrloc", "nat_bflag", 4)
modparam("auth_db", "calculate_ha1", 1)
modparam("auth_db", "password_column", "password")
modparam("rr", "enable_full_lr", 1)
modparam("auth_db|permissions|uri_db|usrloc","db_url","mysql://
openser:openserrw@localhost/openser")
modparam("permissions", "db_mode", 1)
modparam("permissions", "trusted_table", "trusted")
modparam("avpops", "avp_url", "mysql://openser:openserrw@localhost/
openser")
modparam("avpops", "avp_table", "usr_preferences")
modparam("nathelper","rtpproxy_disable", 1)
modparam("nathelper","natping_interval", 0)
modparam("nathelper","received_avp", "$avp(i:42)")
modparam("mediaproxy","natping_interval",20)
modparam("mediaproxy","mediaproxy_socket", "/var/run/mediaproxy.sock")
modparam("mediaproxy","sip_asymmetrics","/etc/openser/sip-clients")
modparam("mediaproxy","rtp_asymmetrics","/ect/openser/rtp-clients")
modparam("acc", "radius_config", "/etc/radiusclient-ng/
radiusclient.conf")

Chapter 10

[255]

modparam("acc", "radius_flag", 2)
modparam("acc", "radius_missed_flag", 3)
modparam("acc", "radius_extra", "User-Name=$Au; \
 Calling-Station-Id=$from; \
 Called-Station-Id=$to; \
 Sip-Translated-Request-URI=$ruri; \
 Sip-RPid=$avp(s:rpid); \
 Source-IP=$si; \
 Source-Port=$sp; \
 Canonical-URI=$avp(s:can_uri); \
 Billing-Party=$avp(s:billing_party); \
 Divert-Reason=$avp(s:divert_reason); \
 X-RTP-Stat=$hdr(X-RTP-Stat); \
 Contact=$hdr(contact); \
 Event=$hdr(event); \
 SIP-Proxy-IP=$avp(s:sip_proxy_ip); \
 ENUM-TLD=$avp(s:enum_tld)")

------------------------- request routing logic -------------------

main routing logic

route{

 #
 # -- 1 -- Request Validation
 #
 if (!mf_process_maxfwd_header("10")) {
 sl_send_reply("483","Too Many Hops");
 exit;
 };

 if (msg:len >= 2048) {
 sl_send_reply("513", "Message too big");
 exit;
 };

 #
 # -- 2 -- Routing Preprocessing
 #
 ## Record-route all except Register
 ## Mark packets with nat=yes
 ## This mark will be used to identify the request in the loose
 ## route section

OpenSER Accounting and Billing

[256]

 if(!is_method("REGISTER")){
 if(nat_uac_test("19")){
 record_route(";nat=yes");
 } else {
 record_route();
 };
 };

 ##Loose_route packets
 if (has_totag()) {
	 #sequential request withing a dialog should
	 # take the path determined by record-routing
	 if (loose_route()) {
 if(method=="BYE") {

 #Account BYE transactions

 setflag(2);

 };

	 #Check authentication of re-invites
	 if(method=="INVITE" && (!allow_trusted())) {	
 if (!proxy_authorize("","subscriber")) {
	 proxy_challenge("","1");
	 exit;
	 } else if (!check_from()) {
	 sl_send_reply("403", "Forbidden, use From=ID");
	 exit;
	 };
 };
 if(method=="BYE" || method=="CANCEL") {
 end_media_session();
 };
 ##Detect requests in the dialog behind NAT,flag with 6
 if(nat_uac_test("19") || search("^Route:.*;nat=yes")){
 append_hf("P-hint: LR|fixcontact,setflag6\r\n");
 fix_contact();
 setbflag(6);
 };
 route(1);
 } else {
 sl_send_reply("404","Not here");
 }
 exit;
 }

 #CANCEL processing

Chapter 10

[257]

 if (is_method("CANCEL")) {
	 if (t_check_trans()) {
 end_media_session();
 t_relay();
 };
 exit;
 }

 t_check_trans();
 #
 # -- 3 -- Determine Request Target
 #
 if (method=="REGISTER") {
 route(2);
 } else {
 route(3);
 };
}

route[1] {
 #
 # -- 4 -- Forward request to target
 #
 # Forward statefully
 t_on_reply("1");
 t_on_failure("1");
 if (!t_relay()) {
 sl_reply_error();
 };
 exit;
}

route[2] {
 ## Register request handler
 if (is_uri_host_local()) {
 if (!www_authorize("", "subscriber")) {
 www_challenge("", "1");
 exit;
 };

 if (!check_to()) {
 sl_send_reply("403", "Forbidden");
 exit;

OpenSER Accounting and Billing

[258]

 };

 if(!search("^Contact:[]**") && client_nat_test("7")) {
 setbflag(6);
 fix_nated_register();
 force_rport();
 };
 save("location");
 exit;

 } else if {

 sl_send_reply("403", "Forbidden");

 };
}

route[3] {
 ## Requests handler
 if (method=="INVITE") {

 # Account INVITE packets

 setflag(2);

 # Account Missed calls

 setflag(3);

 # Radius Extra

 $avp(s:sip_proxy_ip)="127.0.0.1";

 };

 if (is_from_local()){
 # From an internal domain -> check the credentials and the FROM
 if(!allow_trusted()){
 if (!proxy_authorize("","subscriber")) {
 proxy_challenge("","0");
 exit;
 } else if(!check_from()) {
	 sl_send_reply("403", "Forbidden, use From=ID");
	 exit;
	 };	
 };

 if (client_nat_test("3")) {
 append_hf("P-hint: route(3)|setflag7,forcerport,
 fix_contact\r\n");
 setbflag(7);

Chapter 10

[259]

 force_rport();
 fix_contact();
 };

 #unconditional call forward
 if(avp_db_load("$ru/username","$avp(s:callfwd)")) {
 avp_pushto("$ru", "$avp(s:callfwd)");
 route(1);
 exit;
 }
		
 consume_credentials();
		
 #verify aliases, if found replace R-URI.
 lookup("aliases");
				
 if (is_uri_host_local()) {
 # -- Inbound to Inbound
 route(10);
 } else {
 # -- Inbound to outbound
 route(11);
 };

 } else {

 #From an external domain ->do not check credentials
 #Verify aliases, if found replace R-URI.
 lookup("aliases");
 if (is_uri_host_local()) {
 #-- Outbound to inbound
 route(12);
 } else {
 # -- Outbound to outbound
 route(13);
 };
 };
}

route[4] {
 # routing to the public network
 if (!load_gws()) {
 sl_send_reply("503", "Unable to load gateways");
	 exit;

OpenSER Accounting and Billing

[260]

 }
	
 if(!next_gw()){
 sl_send_reply("503", "Unable to find a gateway");
	 exit;
 }
 t_on_failure("2");
 if (!t_relay()) {
 sl_reply_error();
 };
 exit;
}

route[6] {
 #
 # -- NAT handling --
 #
 if (isbflagset(6) || isbflagset(7)) {
 append_hf("P-hint: Route[6]: mediaproxy \r\n");
 use_media_proxy();
 };
}

route[10] {
 #from an internal domain -> inbound
 #Native SIP destinations are handled using the location table
 #Gateway destinations are handled by regular expressions
 append_hf("P-hint: inbound->inbound \r\n");

 if (uri=~"^sip:[2-9][0-9]{6}@") {
 if (is_user_in("credentials","local")) {
 prefix("+1305");
 route(6);
 route(4);
 exit;
 } else {
 sl_send_reply("403", "No permissions for local calls");
 exit;
 };
 };

 if (uri=~"^sip:1[2-9][0-9]{9}@") {
 if (is_user_in("credentials","ld")) {

Chapter 10

[261]

 strip(1);
 prefix("+1");
 route(6);
 route(4);
 exit;
 } else {
 sl_send_reply("403", "No permissions for long distance");
 exit;
 };
 };

 if (uri=~"^sip:011[0-9]*@") {
 if (is_user_in("credentials","int")) {
 strip(3);
 prefix("+");
 route(6);
 route(4);
 exit;
 } else {
 sl_send_reply("403", "No permissions for
 international calls");
 };
 };

 if (!lookup("location")) {
 if (does_uri_exist()) {
 ## User not registered at this time.
 ## Use the IP Address of your e-mail server
 revert_uri();
 prefix("u");
 rewritehostport("192.168.1.171"); #Use the IP address of
 your voicemail server
 route(6);
	 route(1);
 } else {
 sl_send_reply("404", "Not Found");
	 exit;
 }	
 sl_send_reply("404", "Not Found");
 exit;
 };
 route(6);
 route(1);
}

OpenSER Accounting and Billing

[262]

route[11] {
 # from an internal domain -> outbound
 # Simply route the call outbound using DNS search
 append_hf("P-hint: inbound->outbound \r\n");
 route(1);
}

route[12] {
 # From an external domain -> inbound
 # Verify aliases, if found replace R-URI.
 lookup("aliases");
 if (!lookup("location")) {
 sl_send_reply("404", "Not Found");
 exit;
 };
 route(1);
}

route[13] {
 #From an external domain outbound
 #we are not accepting these calls
 append_hf("P-hint: outbound->inbound \r\n");
 sl_send_reply("403", "Forbidden");
 exit;
}

failure_route[1] {
 ##--
 ##-- If cancelled, exit.
 ##--
 if (t_was_cancelled()) {
 exit;
 };
 ##--
 ##-- If busy send to the e-mail server, prefix the "b"
 ##-- character to indicate busy.
 ##--
 if (t_check_status("486")) {
 revert_uri();
 prefix("b");
 rewritehostport("192.168.1.171");
 append_branch();
 route(1);
 exit;

Chapter 10

[263]

 };
 ##--
 ##-- If timeout (408) or unavailable temporarily (480),
 ##-- prefix the uri with the "u"character to indicate
 ##-- unanswered and send to the e-mail
 ##-- sever
 ##--
 if (t_check_status("408") || t_check_status("480")) {
 revert_uri();
 prefix("u");
 rewritehostport("192.168.1.171");
 append_branch();
 route(1);
 exit;
 };
}

failure_route[2] {
 if(!next_gw()) {
 t_reply("503", "Service not available, no more gateways");
 exit;
 };
 t_on_failure("2");
 t_relay();
}

onreply_route[1] {
	 #
	 #-- On-replay block routing --
	 #
	 if (client_nat_test("1")) {
 	 append_hf("P-hint: Onreply-route - fixcontact \r\n");
 	 fix_contact();
	 };

	 if ((isbflagset(6) || isbflagset(7)) &&
 (status=~"(180)|(183)|2[0-9][0-9]")) {
 	 if (search("^Content-Type:[]*application/sdp")) {
 append_hf("P-hint: onreply_route|usemediaproxy \r\n");
	 ������������������use_media_proxy();
 };
 };
 exit;
}

OpenSER Accounting and Billing

[264]

CDRTool Architecture
The tool uses two databases. The RADIUS database, more specifically, the table
radacct and its own database named CDRTOOL. The main process for CDRTool
is the rating engine (/var/www/CDRTool/scripts/ratingEngine.php) This
software is responsible for taking the duration of the call and, according to a series
of parameters, attributing a price to this particular call. The software exposes some
functions allowing you to have online access to data such as Current Balance,
essential for pre-paid billing. Let's explain in this section how the calls are rated.

Rating Engine Functions
Calculate the price of a finished session

Show the maximum time allowed based on caller
info

Add balance to a prepaid customer
Get current balance for a prepaid customer

Get last calls for a subscriber
Reload rating tables

Normalization Process
Remove international and national access codes

Normalization and Rating
process

Accounting
Call Duration

Radius
Database

Rates, Destination, and
Profiles Table

CDRTool
Database

How CDRTool Rates a Call
The software rates the call instantaneously, based on a rating plan, from multiple
data sources such as Asterisk, Cisco, and OpenSER. CDRTool use the RADIUS
database, more specifically the radacct table that contains duration, calling and
called party, and media information (if you are using MediaProxy). The tool
calculates the price of the session in real time and saves it to the radacct table.

Rates are directly related to profiles linked to the time of the day, day of week, and
holidays. A call can span multiple profiles and be correctly rated. Each customer can
be assigned a dedicated rating plan.

The CDRTool rating follows this path:

Chapter 10

[265]

Step 1: Determination of the billing party
CDRTool identifies the rating plans based on the following order:

SIP account user@domain
SIP domain of the SIP account
Source IP of the session
Default

To do this it uses the field radacct.username.

Step 2: Determination of the destination
CDRTool identifies the destination used in the rating process in the order:

Canonical-URI
SIPTranslated RequestURI
CalledStationID

Step 3: PSTN Rating

Look up in the billing profile in cdrtool.billing_customers table in the order
below and use the profile or profiles matching the week day and hour.

Subscriber
Domain
Gateway

Using the profile determine the Rate ID(s) used for a specific destination and
application (only audio is supported).

Calculate the price based on duration or the duration array based on the
following settings. These settings can be changed defining this array inside the
global.inc file:.

"priceDenominator" => 10000, // e.g. 1 Eur = 10000 units
"priceDecimalDigits" => 4, // how many digits to round the prices to
"minimumDurationCharged" => 0, // Only calls greater than this duration
will be charged
"durationPeriodRated" => 60, // the prices from the rating table are
calculated per this period

•

•

•

•

•

•

•

•

•

•

•

•

•

•

OpenSER Accounting and Billing

[266]

"trafficSizeRated" => 1024, // same as above but for data traffic
"reportMissingRates" => 0, // send email notifications if rates are
missing from the ratingEngine
"minimumDuration" => 0 // minimum duration to rate, if call
duration is shorter the price is zero

Price denominator is used to calculate the cents. A rate of 200 with a price
denominator of 10000 is equivalent to 0.02 (2 cents). Minimum duration charged is
used to calculate the minimum price charged. Sometimes, VoIP providers call this
60/6 billing. The Minimum duration charged is 60 seconds, but the increment rated
(durationPeriodRated) is per 6 seconds. You can apply connect and traffic fees as
well. The system is very complete for post-paid billing.

Step 4: Save the calculation in the CDR (radacct table). All the calculated prices are
saved in the radacct table. Check using phpMyAdmin.

More details can be found at the rating documentation in the doc
directory (/var/www/CDRTool/doc/RATING.txt).

•

•

•

Chapter 10

[267]

Lab—Creating and Applying a Rating Plan
Step 1: Log in to the CDRTool and go to the rating tables menu.

Step 2: Choose the Customers database.

Step 3: Insert your domain as Customers. All calls coming from this domain will
be rated according to the profiles inserted. The first profile (551) will be used to rate
calls on week days and the second (552) at the week-ends. Don't forget to set your
timezone and to reload the tables.

Step 4: Insert a profile to rate the calls based on different hours of the day.

OpenSER Accounting and Billing

[268]

The first profile (551) is for weekdays and the second (552) is for week-ends. In this
table you can assign different rates for different hours of the day. Up to four intervals
can be assigned. In the preceding example you have assigned the RateID 551 from
00:00-18:00 on weekdays, and Rate ID 552 after 18:00. For week-ends Rate ID 552
from 00:00 to 18:00 and Rate ID 552 from 18:00-23:59.

Step 5: Assign prices to rate IDs.

Create two new Rate IDs (551) and (552). Rate IDs are independent of profile IDs;
in this case both were set with the same numbers to make it easier. In the example
above, you are assigning a rate of 150 (1.5 cents) to each call during normal hours
and 100 (1 cent) to calls after 18:00. The application is always audio and the connect
parameter allows you to apply connect fees.

Step 6: Assign names for the destination IDs.

Chapter 10

[269]

You can also use the sample tables using the utility importRatingTables.php
located in /var/www/CDRTool/setup/scripts. See instructions in the RATING.txt
file in the doc directory.

Step 7: Make a call to a destination 00554834567890 and check the CDRs.

Summary
In this chapter we have learned how to implement one of the most sensitive
components of a VoIP provider, the accounting. Accounting can be done in MySQL,
RADIUS, and Diameter. We have installed and tested accounting in MySQL and
RADIUS. Besides we have learned how to install and use a rating tool called
CDRTool. This tool has a very important role in the VoIP provider, rating the calls
and calculating the price.

Troubleshooting Tools
After installing the whole system, now is time to start a stress test to check your
configuration. We will use the SIPp utility to test our system. Before we use SIPp
it is important to recognize helpful tools such as openserctl moni, openserctl
online, and the SipTrace module. Packet capturing tools are used on a daily basis in
a voice provider, so we will need to learn how to use Wireshark, Tshark, and ngrep.
Later we will check sipsak, which calls itself a Swiss army knife for SIP. We can use
it along with Nagios and Monit to monitor OpenSER.

Objectives
By the end of this chapter you will be able to:

Recognize the main tools used to manage OpenSER
Understand how to use built-in tools such as openserctl
Capture and analyze packets using Ethereal and ngrep
Troubleshoot customer signaling using SipTrace
Stress test OpenSer using SIPp
Test OpenSer using sipsak

Where Are We?
In the last chapter, we finished the installation of the VoIP provider. Now it is time
to start production and operation. On a daily basis, you will need some tools to deal
with customers complaining about connectivity and voice quality issues. In this
chapter we will show some of the best tools to help you with this task.

•

•

•

•

•

•

Troubleshooting Tools

[272]

Built-in Tools
The built-in tools are openserctl and SIPTRACE.

Openserctl was created to monitor online users using openserctl online. You can also
use the command openserctl ping to ping a registered user and finally, check the
status of the server using openserctl moni.

Be sure that your mi_fifo module is correctly configured or openserctl
won't work for OpenSER statistics. Please, check your openserctlrc file
to see if the FIFO is pointing to the file /tmp/openser_fifo.

Issuing openserctl moni will bring the output below:

Server:: OpenSER (1.2.2-notls (i386/linux))
200 OK
Now:: Sat Nov 3 03:58:25 2007
Up since:: Sat Nov 3 03:55:41 2007
Up time:: 164 [sec]

Transaction Statistics:
200 OK
tm:UAS_transactions = 0

Chapter 11

[273]

tm:UAC_transactions = 0
tm:inuse_transactions = 0

Stateless Server Statistics:
200 OK
sl:sent_replies = 0
sl:sent_err_replies = 0
sl:received_ACKs = 0

UsrLoc Stats:
200 OK
usrloc:registered_users = 0
usrloc:location-users = 0
usrloc:location-contacts = 0
usrloc:location-expires = 2
usrloc:aliases-users = 0
usrloc:aliases-contacts = 0
usrloc:aliases-expires = 0

This built-in tool prints statistics of the TM, SL, and USRLOC modules. You can spot
how many transactions are in use and how many were done. Messages sent bring
you some information about errors occurring. Finally, the usrloc statistics allow you
the check the health of the REGISTER processes.

Packet Capture and Trace Tools
There are several packet capture and trace tools for OpenSER. One of the simplest is
ngrep used throughout this book. TShark, former Tethereal, is a nice tool if you have
a server without a GUI. With Tshark you can export the captured packets to analyze
on Wireshark. Trace tools such as the SIPTRACE module are cool too. However they
can impact the performance of your system when enabled. The SIPTRACE module
logs the inbound and outbound traffic passing through the proxy for a marked
transaction to a database.

TShark, Wireshark
Wireshark (former Ethereal) is the most used protocol analyzer available in the
market and it is GPL licensed. Usually you don't have a GUI (graphical user
interface) in your server, but you can still capture the packets using the text version
of Wireshark known as TShark. We often use ngrep, because it is very simple and
light. To teach you exactly how to use a protocol analyzer is beyond the scope of this
material; however, we will give you some tips on analyzing SIP and RTP packets.

Troubleshooting Tools

[274]

Wireshark has some special statistics for SIP and RTP. After loading the captured
packets, you can start analyzing statistics for the SIP Protocol. Let's try; in the
Wireshark menu select:

Statistics | sip

It will ask you for a Filter; use sip.

Press the Create Stat button.

Chapter 11

[275]

It is a nice trick. You can now check general statistics about your SIP messages. Well,
this is not our best trick, but it can help to spot an abnormal behavior.

Let's go to the second trick, to graph the SIP dialog. In the Wireshark menu select
Statistics | voip calls

You will see the following screen:

In this screen you can select the call you want to graph. After selecting the call press
the Graph button.

Troubleshooting Tools

[276]

You will receive this amazing graph with the SIP dialog. Now you can spot specific
problems in a single dialog. You can even play a call in the previous menu if it is
coded using G.711 Alaw or Ulaw. Very nice indeed, don't you think? We still have
some nice tricks in our bag, so please hold on and check the next.

Well, now let's check the RTP packets. After all, RTP packets will determine the
voice quality. There is no single recommendation; we consider having a good voice
quality to mean the latency is below 150 ms (the one-way equivalent to a round trip
time of 300 ms), jitter below 20 ms, and packet loss below 3%. You can have a good
voice quality with higher latencies. However, the interactivity of the conversation
deteriorates after 150 ms. Sure you can have voice over IP in satellite environments
where the latency is typically 300 ms. The quality of the voice is affected by jitter
much more than latency. Jitter usually causes distortion in the audio. Jitter buffers in
UAs reduces this problem, but sacrificing some latency. However the interactivity is
not as good as when you have a lower value. Check to see what works for you and
use Wireshark to keep the voice quality within in your own standards. To help you
in this task let's use the following statistics. In the Wireshark menu select Statistics |
RTP | Stream Analysis.

Select a stream to analyze. Use Shift-left to select a reverse stream.

Chapter 11

[277]

Now you can analyze packet by packet the jitter, latency (delta), IP bandwidth, and
packet loss of your RTP streams. You can even graph the RTP stream.

In our case we can see by the graph that our jitter is below 5 ms in both directions.
The difference is the inter-arrival time between packets.

SipTrace
OpenSER has a module called SipTrace, which allows you to store SIP messages in
the database. The CDRTool web interface is used as the user interface to trace the
calls directly from the billing data. The module is very simple to use; just load the
module and set the transactions you want to record using a specific flag defined
in the module parameter trace_flag. You will probably not want to record all
messages to the database because of the overhead.

Troubleshooting Tools

[278]

You can set the module parameter trace_on=0 and manually start and stop
tracing the messages using openserctl fifo sip_trace on and openserctl fifo
sip_trace off. Don't forget to set the db_url parameter of the sip_trace module.
The software CDRTool has a nice feature. It displays graphically the data collected
by the SIPTRACE module in the database. In the CDRTool you will see a screen
similar to that below:

Stress Testing Tools
Now we will present some tools to stress test you OpenSER server before going
to production. The first tool is sipsak (www.sipsak.org) and the second is SIPp
(sip.sourceforge.net).

Sipsak
Sipsak is a command-line tool used by SIP administrators. It is used to run simple
tests against the SIP server. It is good too for checking the security of the server,
because you can create the SIP request exactly the way you want. Details can be
found at www.sipsak.org. Let's show an example on how to use it. Install it using:

apt-get install sipsak

Example of use:

sipsak –U –s sip:1000@192.168.1.185 –a 1000 –W 1 –vvvvv

Chapter 11

[279]

This command tests a REGISTER packet againt the SIP proxy and returns the
Nagios code number 1. You can use Nagios (a utility to monitor servers) to monitor
OpenSER using an effective transaction instead of simply pinging it.

SIPp
To explain each detail of SIPp is beyond the scope of this material. The idea here is to
give you an overview of SIPp and teach you how to start. Give enough time to test
your platform; you will need a lot of time to build a test lab with several UACs and
UASes and interpret the results.

SIPp is a tool for traffic generation and stress testing for SIP. It is a good tool to
submit traffic to your SIP server and test it before going to the production phase. It
establishes and releases multiple calls with methods such as INVITE and BYE. The
call rate can be adjusted dynamically. More information can be found at its web site:
sipp.sourceforge.net/doc/reference.html.

Let's see some examples with real-world scenarios of what we can do with this tool.

Installing SIPp
Install the dependencies:

apt-get install g++

apt-get install ncurses-dev

apt-get install openssl-devel

apt-get install libssl-dev

apt-get install libnet1-dev

apt-get install libpcap0.8-dev

Download and decompress the sipp source file:

wget ���http://downloads.sourceforge.net/sipp/sipp-2.0.1.src.tar.gz

tar -xzvf sipp-2.0.1.src.tar.gz

Compile and run:

make

./sipp

Troubleshooting Tools

[280]

Stress Test—The SIP Signaling
To stress test OpenSER you will need to have a user agent client, a user agent server,
and the SIP proxy itself. See the diagram below:

You will need to register the user agent server manually adding a static mapping
in the user location table. In the example below we are saying that user 1003 is at
address 192.168.1.117 (where we started the UAS).

openserctl ul add 1003 sip:1003@192.168.1.117:5060

To start the user agent server use:

./sipp –sn uas

It will show you a screen like that below:

Chapter 11

[281]

In the sample XML files of SIPp, record-routing is not supported. Please change the
script accordingly. I have created an example named openser.chapter11, which I
have used for these tests. You will have to manually handle the ACKs and BYEs.

To start the user agent client use:

./sipp -sn uac 192.168.1.185:5060 -s 1003 -ap 1000 -p 5062 -d 1000

Increase the call rate using the + key until you start seeing retransmissions. In the
case above, 100 simultaneous calls with MediaProxy support was enough. The screen
above refers to my virtual machine. It handles from 75 to 125 simultaneous calls
depending on the current load of the laptop running the VM.

Take care when testing with accounting turned on, you can fill up your
hard disk easily.

Troubleshooting Tools

[282]

Stress Test—The RTP Signaling
It is possible to test the RTP signaling using a combination of a UAS with the
rtp_echo function combined with a UAC with the pcap function. See the detail in
the SIP documentation.

To start the UAS with RTP echo use a command similar to that below. Please adapt
the scenario to your own situation before testing.

Example:

sipp –sf uas.xml –rtp_echo –mi 192.168.1.116 –mp 1000

See the data related to RTP packets echoed by the system in the screenshot.

To start the UAC with pcap use a command similar to :

sipp -sf uac_pcap.xml -s 1003 192.168.1.185:5060

Chapter 11

[283]

You will see a screen like that below:

Testing MediaProxy
To test only MediaProxy using RTP you can use the RTP generator provided by
AG Projects. You can check MediaProxy performance using:

./rtpgenerator --g711 –count=30

To use several machines for testing use the following command in several machines.

./rtpgenerator –ip=ipof the mediaproxy --g711 –count=50

Check the CPU using the Linux OS built-in application top. Use ./sessions.py to
see the sessions available.

Monitoring Tools
To monitor OpenSER you can use a set of utilities along with network monitoring
tools. You can use Nagios along with sipsak to monitor real transactions such as
REGISTER and INVITE. monit (www.tildeslash.com) is another tool you can
use to monitor OpenSer from within. Using monit you can generate alerts about
the status of the system and the OpenSER daemon. A good tutorial on how to
set up monit with OpenSER can be found at www.voip-info.org/wiki/view/
OpenSER+And+Monit.

Troubleshooting Tools

[284]

Summary
In this appendix we have learned about the main tools to test and monitor OpenSER.
It is wise to stress test OpenSER before starting the production phase. Packet capture
tools such as Wireshark and ngrep are very important and will be used on a daily
basis; be familiar, you will certainly need to use them. Finally monit can be used to
monitor the processes and help you to keep OpenSER up and running.

After Words
The idea of the afterword came during the OpenSER summit. I was talking with
a friend who told me about the new configuration file for OpenSER 1.3. It is a bit
different than the one available for 1.2. Verifying the information, I found that the
1.2.3 was different too. So I decided to present here some of the best improvements
seen in the new default files; basically the CANCEL handling (already integrated in
the current script) and the method filtering in the lookup() function. RTPproxy is
another missing part in the book. I have chosen MediaProxy, but now I have heard
from some people that RTPproxy is in some cases 10 times faster than MediaProxy.
Finally, I will describe some areas for improvement and further investigation.

What's New in Version 1.2.3
As I said, the newer version of OpenSER has a slightly different script than the one
encountered in version 1.2.2; let's comment some of the modifications.

Cancel Handling
According to RFC3261, CANCEL requests have to be forwarded in the same way
as INVITE requests. The code below is a shortcut. If an existing �������������������� transaction��������� exists,
the CANCEL will be relayed automatically with the existing information about the
transaction. The proxy needs to be operating in the stateful mode. In other words,
using t_relay() instead of forward() to route the calls.

#CANCEL processing
if (is_method("CANCEL")) {
 if (t_check_trans()) t_relay();
 exit;
}

After Words

[286]

The t_check_trans() will take care of non-CANCEL and non-ACK requests
belonging to a transaction, taking care of the retransmissions, if required. According
to the documentation found at www.openser.org:������������������������������ non-CANCEL/non-ACK requests:
if the request belongs to a transaction (it's a retransmision), the function will process
the retransmission and will break or stop the script. The function returns false if the
request is not a retransmission.

t_check_trans();

Blacklist is Disabled by Default
/* uncomment the next line to enable the auto temporary blacklisting
 of not available destinations (default disabled) */
#disable_dns_blacklist=no

Now in version 1.2.3 the DNS blacklist is disabled by default. I believe this will avoid
a lot of confusion with messages "473 Filtered Destination".

Method Filtering
The new script uses a concept called method filtering. The lookup() function will
return different values in different situations. The values are shown below:

According to the documentation the return codes are:

1—contacts found and returned
-1—no contact found
-2—contacts found, but method not supported
-3—internal error during processing

The code below shows how to implement method filtering:

modparam("registrar", "method_filtering", 1)
if (!lookup("location")) {
 switch ($retcode) {
 case -1:
 case -3:
 t_newtran();
 t_reply("404", "Not Found");
 exit;
 case -2:
 sl_send_reply("405", "Method Not
 Allowed");
 �����exit;
 }
 }

•
•
•
•

After Words

[287]

The system is very clever. ��� If you are trying to contact a user and this user does not
support the method you are using (that is, for example SUBSCRIBE, PRACK), the
system will return a message "405 Method Not Supported". Even if an internal error
occurred, the system will create a new transaction and return a "404 Not Found". In
the case of no contact found, the system will proceed as always with the message
"404 Not Found".

Alias_DB
The lines below, even commented, suggest that now the best way to use Alias is
directly from the database. There is a small performance penalty, but you can insert
new aliases in real time. Aliases are often used for DID (Direct Inward Dial) relaying.

apply DB based aliases (uncomment to enable)
 �������������������������������##alias_db_lookup("dbaliases");

Branch_route
This is not brand new, but now it appears in the default configuration. It is used only
with forking. If a message is forked to five destinations, the branch_route section will
be processed five times. Sometimes this feature is used to filter some numbers before
relaying to the final destination.

Migration from 1.2.2 to 1.2.3 and 1.3.1
For 1.2.3, you don't need to change anything. To use this book with version 1.3.1 you
can find some instructions on this web page:

http://www.openser.org/dokuwiki/doku.php/install:1.2.2-to-1.3.0

Basically, you will need to implement two steps:

The first one is to create the database using openserctldb instead of the old
openser_mysql.sh in Chapter 5.
The second one is to use the migrated script 1.3.1 (the script for Chapter 10
migrated to OpenSER 1.3.1).

Version 1.3.x is brand new at the time I'm writing this section. I recommend that you
wait a little more time before using 1.3.x in a production environment. The OpenSER
development team is releasing a newer version almost every 9 months. It is really
hard to cope with their speed. So please check migration instructions if the ones
above were insufficient.

•

•

After Words

[288]

Migrating the Script from Chapter 10 to
openser 1.3.1
I had to change the following instructions to migrate the script openser.chapter10-
2 to the version 1.3.1. After the changes I tested a call from two phones and two
phones behind NAT. It worked fine, but I did not test the script thoroughly, so it is
possible that you find a few issues.

Step 1: Migrate the gw table in the database (according to the web page cited above).
The old table will be dropped.

mysql
use openser
drop table gw;
delete from version where table_name='gw'; (formatted as code in text)
insert into version values('gw', 5);
CREATE TABLE 'gw' ('id' int(10) unsigned NOT NULL auto_increment,
'gw_name' varchar(128) NOT NULL, 'grp_id' int(10) unsigned NOT NULL,
'ip_addr' varchar(15) NOT NULL, 'port' smallint(5) unsigned default
NULL, 'uri_scheme' tinyint(3) unsigned default NULL, 'transport'
tinyint(3) unsigned default NULL, 'strip' tinyint(3) unsigned default
NULL, 'prefix' varchar(16) default NULL, 'dm' tinyint(3) unsigned
NOT NULL default '1', PRIMARY KEY ('id'), UNIQUE KEY 'gw_name_idx'
('gw_name'), KEY 'grp_id_idx' ('grp_id')) ENGINE=MyISAM DEFAULT
CHARSET=latin1;

Step2: Add the following lines to the script:

modparam("lcr", "dm_flag", 25)
modparam("lcr", "fr_inv_timer_avp", "$avp(i:704)")
modparam("lcr", "gw_uri_avp", "$avp(i:709)")
modparam("lcr", "ruri_user_avp", "$avp(i:500)")
modparam("lcr", "contact_avp", "$avp(i:711)")
modparam("^auth$|lcr", "rpid_avp", "$avp(i:302)")

Step 3: remove the following lines from the script:

modparam("nathelper","rtpproxy_disable", 1)

After Words

[289]

RTPProxy
RTPproxy cannot be ignored. I made a mistake to focus only on MediaProxy for this
book. Some people claim that RTPproxy, developed in C, is in some cases ten times
faster than MediaProxy, developed in Python. This is a huge difference and can't be
ignored. It can be easily load balanced to achieve even greater scalability. However,
MediaProxy has a resource able to fix the CDRs for dialogs with a missing
BYE. RTPproxy does not have this same feature at the time I'm writing (I will present
some ways to work around this). RTPproxy was developed by Maxim Sobolev and is
now being actively maintained by Sippy Software Inc
(http://www.rtpproxy.org).

Lab—Installing RTPProxy
Now let's quickly install the RTPproxy server.

Step 1: Donwload and compile the RTPproxy.

cd /usr/src

wget ��http://b2bua.org/chrome/site/rtpproxy-1.0.2.tar.gz

tar –xzvf rtpproxy-1.0.2.tar.gz

cd rtpproxy-1.0.2

./configure

make

make install

Step 2: Copy the file openser.rtpproxy, provided in the support area of the
packtpub website, and copy it to openser.cfg. Restart OpenSER and test the
new script.

Step 3: Start RTPproxy.

./rtpproxy -l 8.8.1.20 -s udp:127.0.0.1:7890

Remember to change the value 8.8.1.20 to the external address of your
RTPproxy server.

The RTPproxy server must have a valid IP address (non-RFC1918)!!!

After Words

[290]

Areas for Further Investigation
There are some new modules for OpenSER 1.2 and 1.3. I didn't have enough time
to research and write about them, but they are "on the radar". I will present an
introduction to some of them below.

Carrier Route
Carrier Route first appeared in version 1.3.x. It is like a super LCR, allowing you
to connect to a provider with a lot more features and speed compared to LCR.
According to the documentation, it scales to several million users and is able to
handle many thousand routes. It is a must-read for VoIP providers.

Dialog
The dialog module introduces dialog awareness to SIP proxy. The first practical use
is to discover the number of active dialogs (calls). The module does not export any
functions but makes available several statistics. Another use for this module is as a
base for dialog information. Load the Dialog module in your script, make some calls
and see the difference in the openserctl moni command output.

SIP Session Timers
SIP Session timers enhance the SIP protocol adding the capability to refresh SIP
sessions resending repeated re-invites. The objective of this behavior is to establish a
keep-alive mechanism. SIP proxies do not have control over the media. If a user does
not send a BYE message (that is, disconnected from the network), the proxy
do not have a mechanism to close this call and to generate the CDR (Call Detail
Record) precisely.

There are, basically, three solutions for the problem of missing BYEs and the
generation of the CDRs:

1.	 Generate CDRs only in the gateways and B2BUA (back to back user agents).
They have an RTPTimeout mechanism able to finish the call, even without
the BYE message. B2BUAs impose a performance penalty and require all the
media to traverse your provider.

2.	 Use MediaProxy to fix the missing BYE session directly in the RADIUS
Server. The software has a feature, allowing direct access to the RADIUS
MySQL database. To activate this, check the configuration file mediaproxy.
ini. Again, all the media has to traverse your provider.

After Words

[291]

3.	 Implement Session Timers on all your clients or in all your gateways. Check
to see if your wholesale providers support it. Another way is to provide your
phones or ATA (analog telephony adapters) with this configuration.

The last solution is the most scalable and does not break the philosophy of having
peer-to-peer communications. It can save a lot of money on data access fees. The
support for session timers is described in RFC4028. Recently, Asterisk announced
support for RFC4028 integrated into Asterisk 1.6. SIP Session Timers need to be
installed on UA or gateways, not necessarily on both.

SIP Peering
In Chapter 7, you saw how to terminate calls in a PSTN gateway. These days, most of
time, you will terminate your calls in a VoIP Provider. To protect your gateways, you
probably used a firewall preventing any other person from accessing the gateway's
SIP channel directly. When you receive a call from the gateway, a trusted table is
used to authorize the calls and your gateway is controlled inside your network.
There are at least four ways to connect to a VoIP provider using OpenSER; let's see
the pros and cons of the solutions:

1.	 Your VoIP provider authorizes your IP, and will bill according to the source
IP. This is very common and I have seen several times. It is very simple,
but it is definitely not the safest method. Some VoIP providers will require
authentication.

2.	 If your VoIP provider requires user authentication, the standard way to
do this is to use a B2BUA such as Asterisk. You configure Asterisk as an
ordinary gateway, but instead of terminating calls in the PSTN it terminates
the calls in the VoIP provider. Calls coming from a user will be bridged to the
VoIP provider in the B2BUA server. This solution forces the traffic through
your network and requires several additional servers. Check the UAC
module of version 1.3; it has started to support authentication using "qop-
auth". Maybe it is worth a try.

3.	 You can have an agreement with your VoIP provider to use a VPN to
encrypt SIP traffic. You send the calls to the other domain, without the need
of authentication. Authentication is performed at the network level using a
VPN. RTP packets won't be encrypted, because there is a lot of overhead in
this process and the traffic is peer-to-peer out of your control. You will have
to force the SIP traffic through your proxy, using the outbound proxy setting
in your phones.

After Words

[292]

4.	 You can also use TLS. You will receive traffic from your users using UDP
or TCP, but you will forward this traffic to the provider using TLS. A pair
of public/private keys will handle the authentication, and the SIP traffic is
secure. Again RTP packets are untouched. The peer-to-peer nature of SIP is
preserved in this solution too. You will have to force the traffic to your proxy,
using the outbound proxy setting in your phones.

TLS Transport Layer Security
TLS has the potential to protect communications between parties in a SIP call. I
believe it is one of the standards that will grow in the near future, mainly because
of the adoption of NGNs (next generation networks) in the Telco companies.
It is possible to protect the communication from users and to VoIP providers. I
recommend reading about this. TLS does not encrypt RTP packets, but it can be used
to exchange keys for SRTP (secure RTP). SRTP can be used to encrypt SIP traffic.

Development
For those willing to develop and who don't want to use C, it is now possible to use
Perl or Java. These programming languages are easier to learn and to debug than C.

PERL
Perl is a new module present in OpenSER 1.2.x. It may be used to develop
applications interfacing directly to OpenSER. Check the documentation at
www.openser.org. http://www.openser.org/docs/modules/1.2.x/perl.html.

WeSIP
WeSIP will allow you to develop SIP applications using Java and OpenSER.
According to its web page "WeSIP is a SIP and HTTP Converged Application Server
built on top of OpenSER".

Common Mistakes
I will present now a list of several common mistakes made when using this material.
I observed this in the classroom when teaching this material in Portuguese. For
anyone interested in training please check the calendar at www.sermyadmin.org.

After Words

[293]

Daemon Does Not Start
This is very common. What you have to do is:

1.	 First, run openser –c to check for syntax errors in the configuration file.
2.	 Check /var/log/syslog for errors in the loading of modules.

This usually solves most problems.

Another common mistake is to start using the init script and try to stop using
openserctl and vice versa. Please don't mess with the starting commands. Rule
of thumb:

If you start using /etc/init.d/openser start, stop using
/etc/init.d/openser stop.
In the other hand, if you start using openserctl start, stop using
openserctl stop.

Client Unable to Register
This is by far the most common problem. Check the following things:

1.	 Is your domain inserted in the domain table of the database? If you are
using an IP address, please insert the IP addres to the database too.

2.	 Plaintext or encrypted passwords? You can't mix plaintext with encrypted
passwords. There are two places to check:

Use the code below for plaintext passwords in the file openser.cfg:

modparam("auth_db", "calculate_ha1", yes)
modparam("auth_db", "password_column", "password")

In the file openserctlrc, be sure to leave commented:

#STORE_PLAINTEXT=0

On the other hand, if you want to use encrypted passwords use in openser.cfg:

modparam("auth_db", "calculate_ha1", 0)
modparam("auth_db", "password_column", "ha1")

In the file openserctlrc, be sure to leave uncommented:

STORE_PLAINTEXT=0

•

•

After Words

[294]

If you mix these things, you will end up not authenticating. The file openserctlrc
regulates the creation of the users using openserctl. So, if you change this setting,
the new settings will be valid only for new users. SerMyAdmin does not support
encrypted passwords at this time.

Sending a Call to a Provider with
Authentication
I have seen this several times. Some people think of OpenSER as if it was similar to
an Asterisk Server. OpenSER is a SIP proxy, while Asterisk is a B2BUA. OpenSER is
not able to authenticate ahead.

The standards for inter-domain communication are different than those for the
communication between clients and servers. You cannot use your SIP proxy to
authenticate to other SIP Proxies ahead. However there is a small hack. There is a
module called UAC (User Agent Client) that allows you to mangle from and to fields
and authentication. Until version 1.2.x, the module didn't have support for qop-auth
(authentication using quality of protection), which makes it almost useless. Now in
version 1.3.x it has. So it is time to give it a try again. Anyway, the best method is still
using TLS for SIP Peering.

Typos in the Configuration File
It is funny that almost nobody gets to complete the CDRTool lab in the first time. It
is very common to make a mistake in the global.inc file. I copied mine to the files
available with this book. I hope it helps.

It is very common too, to invert the load order of dictionaries in the RADIUS
configuration. Please check or you will finish with missing fields in
your CDRs.
Take care of the indentation in the files. It is very easy to get lost in the
if clauses.

The Last Tip
Be sure to understand the difference between initial and sequential requests.
Sequential requests in the same dialog such as BYE and ACK are handled in the
loose_route section, if you are using "record route". If you can't differentiate
what is a transaction and what is a dialog, OpenSER can potentially make your life
miserable. Be sure to understand these concepts thoroughly; if you don't, go back to
routing basics in Chapter 4.

•

•

After Words

[295]

Forum and Training
By the time you start reading this material, I will have www.sermayadmin.org
configured. I'm creating a forum to exchange ideas for the book and corresponding
training. The participation in the forum will be free of charge. I hope to post answers
to the most common questions there. The calendar for training in Portuguese
and English will be posted there too. Anyone interested in promoting training,
please contact flavio@asteriskguide.com. Training will be held in English and
Portuguese. Check for available dates and locations.

Summary
In this chapter, I tried to present some of the things that I think will help you. I
would like to write a lot more, but one day the book has to finish. OpenSER versions
change very often and most of times the scripts are not totally compatible with the
previous version. This is a nightmare for anyone trying to write about a topic. I spent
a lot of time changing this material from 1.0 to 1.1 and to 1.2 and by the time I wrote
this, 1.3.1 is available. I decided to stop running like a "dog chasing its tail" and
publish the material with version 1.2.x. I'm making available the script adapted to
1.3.1 in the packtpub support website. Please check this area for newer scripts when
new releases are made available. I hope this book helps you. Countless hours were
spent testing the labs and migrating from one version to another. I hope all this effort
benefits you and enables you to avoid all the time I have spent debugging.

Index
A
ALG 226
Application Layer Gateways. See ALG
architecture, OpenSER

core 34
file openser.cfg, sections 34
modules 34
openser.cfg message processing 35
SIP dialog 35
SIP session 35
SIP transaction 35

Asterisk Voice Mail 163
Attribute-Value-pair. See AVP
AUTH_DB module

about 80
parmeters 80
proxy_authorize(realm, table) function 81
www_authorize(realm, table) function 81

AVP
about 167
AVPOPs module loading 169
overview 167

C
call forwarding

about 163
blind call forwarding, implementing

169-172
call forward on busy/unanswered,

implementing 173
testing 184

call forwarding, types
blind call forwarding 164
forward on busy 164

forward on no answer 164
CDRTool

about 247
architecture 264
call rating 264, 266
installing 247-252
rating plan, applying 267, 268
rating plan, creating 267, 268
using 253-263
using, for rating 246

components, SIP
Location server 10
Proxy server 10
Redirect server 10
registrar 11
user agent 10
user agent client 10
user agent server 10

D
digest authentication

about 87
authorization request header 88
qop(quality of protection) parameter 88
WWW-Authenticate response header 88

F
features, OpenSER

usage scenarios 32
file openser.cfg, OpenSER

failure routing blocks 34
global definitions 34
main routing block 34
modules 34
modules configuration 34

[298]

reply routing blocks 34
secondary routing block 34

freeradius
installing 240

freeradius installation
database for freeradius server, creating

240, 241
freeradius server, configuring 242, 243
OpenSER, configuring 244
OpenSER configuration, testing making a

call 245, 246
packages and dependencies 240
radius client, configuring 243
steps 240

H
HTTP 7

I
ICE 227
installation, OpenSER

hardware requirements 41
Linux, installing 42-54
Linux distro the Debian Etch, installing 42
OpenSER, running at Linux boot 56
OpenSER v1.2, Downloading 54
OpenSER v1.2, installation process 54
OpenSER v1.2, installing 54
software requirements 42

Interactive Connection Establishment.
See ICE;

INVITE authentication sequence
about 84
code snippet 86
message, authenticating 85
packet capture, by ngrep 85

L
NAT traversal, testing 223
SerMyAdmin, installing 116

LCR
about 149
gateway group table 152
gateways table 151
gateways table, adding 152

gateways table, removing 152
gateways table, showing 152
lab, executing with LCR 153-158
lab, lcr gateway groups 159
lab, lcr gateways 159
lab, lcr routes 160
lab bench 153
LCR module 149
LCR module, configuration diagram 150
LCR table 151
LCR table, adding 152
LCR table, removing 152
LCR table, showing 152
openserctl LCR-related commands 152
openserctl LCR-related commands, exam-

ples 153
openserctl LCR-related commands, notes

153
VoIP provider dial plan 150

least Cost Routes. See LCR
Linux

installing, for OpenSER 42-54
log levels, standard configuration

L_ALERT (-3) 66
L_CRIT (-2) 66
L_DBG (4) 66
L_ERR (-1) 66
L_INFO (3) 66
L_NOTICE (2) 66
L_WARN (1) 66

M
media proxy 27
Media Proxy server

configuration 195
features 195
installing 195, 197, 198, 200

media servers
Asterisk Voice Mail 163
Freeswitch 163
SEMS 163
Yate 163

modules, OpenSER 1.2 and 1.3
carrier route 290
dialog 290
SIP session timers 290

[299]

MySQL
installing, in OpenSER 89-92
mysql.so module, verifying 89
parameters, of tables 89
tables, creating 89

N
NAT

about 185
firewall table 188
types 186

NAT, types
full cone 186
port restricted cone 187
restricted cone 186
symmetric 187

near-end solution, SIP NAT traversal
ALG 226
ICE 227
implementing 224
STUN 224

non-register request, openserctl shell script
calls, managing from domain 105
inbound to inbound calls, route[10] 105
inbound to outbound calls, route[11] 105
outbound to inbound calls, route[12] 105
outbound to outbound calls, route[13] 106

O
OpenSER

473/Filtered Destination messages 161
about 31
aliases 106
architecture 33
Asterisk gateway, configuring 147
AUTH_DB module 80
AVPOPs module 165
AVPs 165
built-in tools 272
call forwarding 164
check_from() function 106
check_to() function 106
Cisco 2601 gateway 148
configuration file, inspecting 182, 183
configuring, for using MySQL 90
digest authentication 87

dns blacklists 161
full script, with all resources 108-111
installation 41
INVITE authentication sequence 84
lab, aliases adding 112
lab, Asterisk using as PSTN gateway

145-147
LCR, used to route calls 149
log files 57
loose routing 38
migrating, from 1.2.2 to 1.2.3 and 1.3.1 287
modules 32
MySQL 80
MySQL, installing 89
openser.cfg file analysis 93, 94
openser.cfg inspection 142, 144
openser.pstn script 137-141
openserctl, built-in tools 272
openserctl shell script 94
overview 31
packet capture tools 273
pseudo-variables 165
PSTN 131
re-INVITES, securing 160
REGISTER authentication sequence 81
script, migrating 288
security, lab-enhancing 112
SerMyAdmin 115
SIP peering 291
SIP routing, basics 72
siptrace, built-in tools 272
standard configuration 61
startup options 58, 59
stress, testing 280, 282
stress testing tools 278
tools, monitoring 283
tools, monitoring MONIT tool used 283
trace tools 273
UAC 81
VoIP provider, connecting to 291

Openser.cfg analysis
BYE/CANCEL message, processing 203
INVITE message, processing 203
mediaproxy module 201
modules, loading 201
modules parameters 201
nathelper module 201

[300]

RE-INVITES message, handling 204
REGISTER message, processing 202
reply message, handling 205
routing script 206

OpenSER 1.2.3, modifications 285
Alias_DB 287
blacklist, disabling by default 286
branch_route section 287
CANCEL requests, handling 285, 286
method filtering 286
method filtering, implementing 286, 287

openserctl shell script
about 94
alternate routes 103
authentication, implementing 99, 100, 101
enhancing 102
multiple domains, managing 102
non-register request, route [3] 103
openserctlrc file 98
openserctl resource file 98
output, openserctl help command 95, 96, 97
register request, route [2] 103
uses 94

OpenSER v1.2
compilation installation process 54
directory structure 56
downloading 54
installing 54

OpenSER v1.2, directory structure
Binaries (/sbin) 57
configuration files (etc/openser) 57
modules (/lib/openser/modules) 57

P
packet capture tools

ngrep 273
tshark 273
Wireshark 273
Wireshark, statistics for RTP 276, 277
Wireshark, statistics for SIP 274, 275

Perl 292
protocols

RTP 8
RTSP 8
RVSP 8
SAP 8

SDP 8
SIP 7

pseudo-variables
$ar 165
$au 165
$bR 165
$br 165
$ci 165
$cl 165
$cs 165
$cT 165
$ct 165
$dd 165
$di 165
$dP 165
$dp 165
$ds 165
$du 165
$fd 165
$fn 166
$ft 166
$fU 166
$fu 166
$mb 166
$mF 166
$mf 166
$mi 166
$ml 166
$od 166
$oP 166
$op 166
$oU 166
$ou 166
$pp 166
$rb 166
$rc 166
$rd 166
$re 167
$Ri 166
$rm 166
$Rp 166
$rP 166
$rp 166
$rr 166
$rs 166
$rt 166
$rU 166

[301]

$ru 166
$si 166
$sp 166
$td 166
$Tf 167
$tn 166
$Ts 167
$tt 166
$tU 167
$tu 166
$ua 167
about 165
Acc 165
Avpops 165
Textops 165
Uac 165
Xlog 165

PSTN
about 131
call, routing 136
calls, authorizing from 135
conditions, for accepting request 135
permissions module 135
permissions module, allow_trusted() func-

tion 135
requests, coming from 135
requests, sent to 133
trusted host list, updating SerMyAdmin

used 136
PSTN gateway

AudioCodesTM 27
CiscoTM 27
QuintumTM 27

Public Switched Telephony Network. See
PSTN

R
Radius 239
REGISTER authentication sequence

about 81
code snippet 84
messages, authenticating 81
packet capture, by ngrep 82

Remote Authentication Dial User Service.
See Radius

RFC 7

RFC198 185
RFC3261 7
RFC3665

about 12
basic flows 12, 13

routing basics
initial requests 73
transactions 72

RTP packets traversal
solving, Media Proxy used 190
solving, RTP Proxy used 190
UDP traversal, over relay NAT 190

RTP protocol
about 23, 39
codecs 23
DTMF 23
RTCP 23, 24

RTP Proxy
about 289
RTP Proxy server, installing 289

S
SDP 24
SER. See SIP Express Router
SerMyAdmin

about 115, 116
basic tasks 121
domain management 127
installing 116, 117, 119, 120, 121
interface customization 127
interface customization 128
new user, approving 122, 123
new user, registering 122
user management 124, 126

Session Border Controllers (SBC) 190
Session Description Protocol. See SDP
SIP

about 7, 39
architecture 8
basic messages 14, 15
components 10
dialog 22
dialog flow 16, 18, 19
features 7
header fields 17
NAT traversal challenge, solving 188

[302]

operation theory 10
OSI model 25
references 28
registering process 11
RTP protocol 23
SDP 24
server, operating as SIP Proxy 13
server, operating as SIP Redirect 14
session establishment 22
SIP address 8
SIP message, example 10
SIP model 9
SIP Proxy 9
SIP URI 16
transaction 22

SIP, header fields
CALL-ID 18
CONTACT 18
CONTENT-LENGHT 18
CONTENT-TYPE 18
CSEQ 18
FROM 17
MAX-FORWARDS 18
TO 17
VIA 17

SIP Express Router
about 29, 30
overview 31

SIP extensions
RFC 3515 27
RFC3891 27
RFC 3892 27

SIP messages
loose and strict routing, differences 38
loose routing 38, 39
routing methods 38
strict routing, issues 38

SIP NAT traversal
ALG 226
client, determining 192
ICE 227
invite diagram 215
INVITE messages, handling behind NAT

193
Media Proxy server, installing 195
near-end NAT solution, implementing 224
packet sequence 215-222

REGISTER requests, handling behind NAT
191, 192

responses, handling 195
RTP, handling behind NAT 194
STUN, comparing with TURN 226
STUN, implementing 224, 225
STUN, not working with symmetric NAT

devices 226
testing, Media Proxy used 223

SIP NAT traversal challenge
far-end solution, implementing 188
far-end solutions 188
near-end solutions 188
RFC3581 and force_rport() function 189
RTP packets traversal, solving 190
SIP NAT traversal problem, types 189
solving 188
TURN solution 189

SIP NAT traversal problem, types
RTP protocol 189
SIP protocol 189

SIP Proxy
about 9
alias 8
basic processing 35, 36
calls, classified 102
stateful operation 36
stateful operation, necessary processing

steps 37
SIP PSTN Gateway 131
SIP routing, basics

dialogs 72
lab, dialog tracking 74-76
lab, record-route disabling 77
lab, stateless mode 77
routing, in dialog 74
routing, in transaction 73
sequential requests 73

SIP URI 16
software requirements

bison or yacc(Berkley yacc), packages 42
BSD 42
flex, packages 42
gcc, packages 42
GNU install, packages 42
GNU make, packages 42
GNU tar, packages 42

[303]

Linux 42
packages 42
Solaris 42

standard configuration, OpenSER
analyzing 62, 66
append_hf function 69
children directive 66
fork directive 66
log levels 66
lookup(70
loose_route() function 68
modparam directive 67
module search path 67
port=5060 67
record_route() function 68
REGISTER method 70
route 68
sl_replay_error() function 71
t_relay() function 69
uses 71, 72, 78

stress testing tools
about 278
mediaproxy, testing 283
SIPp 279
SIPp, installing 279
Sipsak 278
stress test, RTP signaling 282
stress test, SIP signaling 280, 281

STUN
about 224
advantages 224
comparing with TURN 226
working 225

T
TLS 292
trace tools

siptrace 277

Transport Layer Security. See TLS
troubleshooting

call, sending to provider 294
Client Unable to Register 293
Daemon Does not Start 293
TIP 294
typos, in configuration file 294

V
VoIP provider

about 26
accounting, implementing 231
accounting, using MySQL 231-238
accounting, using Radius 239
accounting configuration 231
advantages 291
architecture 230
call forwarding 163
CDRTool, rating 28
connecting ways 291
disadvantages 291
media proxy, for Nat traversal 27
media server 27
openser.cfg analysis 238
portal, provisioning 27
PSTN gateway 27
radius, accounting 27
RTP Proxy, for NAT traversal 27
SEMS Sip Express media server 27
SEMS Sip Express media server, features 27
SIP Proxy 26
tools, monitoring 28
user administration 27

W
WeSIP 292

	Building Telephony Systems with OpenSER
	Table of Contents
	Preface
	Chapter 1: Introduction to SIP
	SIP Basics
	SIP Proxy in the Context of a VOIP Provider
	SIP Operation Theory
	SIP Registration Process

	Server Operating as a SIP Proxy
	Server Operating as a SIP Redirect
	Basic Messages
	SIP Dialog Flow

	SIP Transactions and Dialogs
	The RTP Protocol
	Codecs
	DTMF-Relay
	Real Time Control Protocol (RTCP)

	Session Description Protocol (SDP)

	The SIP Protocol and the OSI Model
	The VoIP Provider "Big Picture"
	SIP Proxy
	User, Administration, and Provisioning Portal
	PSTN Gateway
	Media Server
	Media Proxy or RTP Proxy for Nat Traversal
	RADIUS Accounting
	CDRTool Rating
	Monitoring Tools

	Where You Can Find More Information
	Summary

	Chapter 2: The SIP Express Router
	Where Are We?
	What is the SIP Express Router?
	What Software to Use, SER or OpenSER?
	Usage Scenarios
	OpenSER Architecture
	Core and Modules
	Sections of the File openser.cfg
	Sessions, Dialogs, and Transactions
	openser.cfg Message Processing

	SIP Proxy—Expected Behavior
	Stateful Operation
	Differences between Strict Routing and Loose Routing
	Understanding SIP and RTP
	Summary

	Chapter 3: OpenSER Installation
	Hardware Requirements
	Software Requirements
	Lab—Installing Linux for OpenSER
	Downloading and Installing OpenSER v1.2
	Lab—Running OpenSER at the Linux Boot
	OpenSER v1.2 Directory Structure
	Configuration Files (etc/openser)
	Modules (/lib/openser/modules)
	Binaries (/sbin)

	Log Files
	Startup Options
	Summary

	Chapter 4: OpenSER Standard Configuration
	Where Are We?
	Analyzing the Standard Configuration
	Using the Standard Configuration
	Routing Basics
	Transactions and Dialogs
	Initial and Sequential Requests
	Routing in a Context of a Transaction
	Routing in the Context of a Dialog
	Lab—Tracking a Complete Dialog
	Lab—Running Stateless
	Lab—Disabling record-route

	Summary

	Chapter 5: Adding Authentication with MySQL
	Where Are We?
	The AUTH_DB Module
	The REGISTER Authentication Sequence
	Register Sequence (Packets Captured by ngrep)
	Register Sequence Code Snippet
	The INVITE Authentication Sequence
	INVITE Sequence Packet Capture

	Digest Authentication
	WWW-Authenticate Response Header
	The Authorization Request Header
	QOP—Quality of Protection

	Installing MySQL Support
	openser.cfg File Analysis

	The Openserctl Shell Script
	Openserctl Resource File
	Openserctlrc File

	Using OpenSER with Authentication
	Enhancing the Script
	Managing Multiple Domains
	Alternative Routes

	The Functions check_to() and check_from()
	Using Aliases
	Handling CANCEL requests and retransmissions
	Full Script with All the Resources Above
	Lab—Enhancing the Security
	Lab—Using Aliases
	Summary

	Chapter 6: Building the User Portal with SerMyAdmin
	SerMyAdmin
	Lab—Installing SerMyAdmin

	Basic Tasks
	Registering a New User
	Approving a New User
	User Management
	Domain Management
	Interface Customization

	Summary

	Chapter 7: Connectivity to the PSTN
	Where Are We?
	Requests Sent to the Gateway
	Requests Coming From the Gateway
	openser.cfg Inspection

	Lab—Using Asterisk as a PSTN Gateway
	Asterisk Gateway (sip.conf)
	Cisco 2601 Gateway

	Using LCR (Least Cost Routes)
	The LCR Module
	Configuration Diagram

	VoIP Provider Dial Plan
	The LCR Table
	The Gateways Table
	The Gateway Groups Table

	Adding, Removing, and Showing LCR and Gateways
	Openserctl LCR-Related Commands.
	Notes:
	Examples:

	Lab—Using the LCR Feature
	lcr Gateway Groups
	lcr Gateways
	lcr Routes

	Securing re-INVITES
	Blacklists and "473/Filtered Destination" messages
	Summary

	Chapter 8: Call Forward and Voice Mail
	Call Forwarding
	Pseudo-Variables
	AVP (Attribute-Value Pair) Overview
	AVPOPS Module Loading and Parameters

	Implementing Blind Call Forwarding
	Lab—Implementing Blind Call Forwarding

	Implementing Call Forward on Busy or Unanswered

	Inspecting the Configuration File
	Lab—Testing the Call Forward Feature
	Summary

	Chapter 9: SIP NAT Traversal
	NAT Types
	Full Cone
	Restricted Cone
	Port Restricted Cone
	Symmetric
	NAT Firewall Table

	Solving the SIP NAT Traversal Challenge
	Implementing a Far-End NAT Solution
	RFC3581 and the force_rport() Function
	Solving the Traversal of RTP Packets

	Handling REGISTER Requests behind NAT
	Determining if the Client is behind NAT

	Handling INVITE Messages behind NAT
	Handling the Responses
	MediaProxy Installation and Configuration
	Installing MediaProxy

	openser.cfg Analysis
	Modules Loading
	Modules' Parameters
	Register Message Processing
	Invite Message Processing
	BYE and CANCEL Message Processing
	RE-INVITE Message Handling
	Reply Message Handling
	Routing Script

	Invite Diagram
	Packet Sequence

	Lab Using MediaProxy for NAT Traversal
	Implementing a Near-End NAT Solution
	Why STUN Does Not Work with Symmetric NAT Devices
	Comparing STUN with TURN (Media Relay Server)
	ALG—Application Layer Gateways
	ICE (Interactive Connection Establishment)

	Summary

	Chapter 10: OpenSER Accounting and Billing
	Objectives
	Where Are We?
	VoIP Provider Architecture
	Accounting Configuration
	LAB—Accounting using MySQL
	openser.cfg Analysis
	Accounting using RADIUS

	Installation of FreeRADIUS and CDRTool
	Packages and Dependencies
	Create and Configure the Database for the Radius server
	Configuration of the FreeRADIUS Server
	Configure the RADIUS Client (radiusclient-ng)
	Configure OpenSER
	Test the Configuration after Making a Call

	Using CDRTool for Rating
	LAB—CDRTool Installation
	LAB—Using CDRTool

	CDRTool Architecture
	How CDRTool Rates a Call
	Lab—Creating and Applying a Rating Plan

	Summary

	Chapter 11: Troubleshooting Tools
	Objectives
	Built-in Tools
	Packet Capture and Trace Tools
	TShark, Wireshark
	SipTrace
	Stress Testing Tools
	Sipsak
	SIPp
	Installing SIPp
	Stress Test—The SIP Signaling
	Stress Test—The RTP Signaling
	Testing MediaProxy

	Monitoring Tools

	Summary

	After Words
	What's New in Version 1.2.3
	Cancel Handling
	Blacklist is Disabled by Default
	Method Filtering
	Alias_DB
	Branch_route

	Migration from 1.2.2 to 1.2.3 and 1.3.1
	Migrating the Script from Chapter 10 to openser 1.3.1
	RTPProxy
	Lab—Installing RTPProxy

	Areas for Further Investigation
	Carrier Route
	Dialog
	SIP Session Timers

	SIP Peering
	TLS Transport Layer Security
	Development
	PERL
	WeSIP

	Common Mistakes
	Daemon Does Not Start
	Client Unable to Register
	Sending a Call to a Provider with Authentication
	Typos in the Configuration File
	The Last Tip

	Forum and Training
	Summary

	Index

